skip to main content
research-article

Using grammars for pattern recognition in images: A systematic review

Authors Info & Claims
Published:01 November 2013Publication History
Skip Abstract Section

Abstract

Grammars are widely used to describe string languages such as programming and natural languages and, more recently, biosequences. Moreover, since the 1980s grammars have been used in computer vision and related areas. Some factors accountable for this increasing use regard its relatively simple understanding and its ability to represent some semantic pattern models found in images, both spatially and temporally. The objective of this article is to present an overview regarding the use of syntactic pattern recognition methods in image representations in several applications. To achieve this purpose, we used a systematic review process to investigate the main digital libraries in the area and to document the phases of the study in order to allow the auditing and further investigation. The results indicated that in some of the studies retrieved, manually created grammars were used to comply with a particular purpose. Other studies performed a learning process of the grammatical rules. In addition, this article also points out still unexplored research opportunities in the literature.

References

  1. Angluin, D. 1992. Computational learning theory: Survey and selected bibliography. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC'92). ACM, New York, 351--369. DOI: http://dx.doi.org/10.1145/129712.129746. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Böhm, C., Berchtold, S., and Keim, D. A. 2001. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33, 3, 322--373. DOI: http://dx.doi.org/10.1145/502807.502809. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chanda, G. and Dellaert, F. 2004. Grammatical Methods in Computer Vision: An Overview. Tech. rep. Georgia Tech Institute of Technology.Google ScholarGoogle Scholar
  4. Chen, H., Xu, Z. J., Liu, Z. Q., and Zhu, S. C. 2006. Composite templates for cloth modeling and sketching. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1 (CVPR'06). IEEE Computer Society, Washington, DC, 943--950. DOI: http://dx.doi.org/10.1109/CVPR.2006.81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Christensen, H. I., Matas, J., and Kittler, J. 1996. Using grammars for scene interpretation. In Proceedings of the International Conference on Image Processing, vol. 1. 793--796 DOI: http://dx.doi.org/10.1109/ICIP.1996.561024.Google ScholarGoogle ScholarCross RefCross Ref
  6. Doi, K. 2007. Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Comput. Med. Imaging Graphics 31, 4--5, 191--211.Google ScholarGoogle ScholarCross RefCross Ref
  7. Fernau, H. 2003. Parallel grammars: A phenomenology. Grammars 6, 1, 25--87. DOI: http://dx.doi.org/10.1023/A:1024087118762.Google ScholarGoogle ScholarCross RefCross Ref
  8. Ferreira, M. J., Santos, C. P., and Monteiro, J. 2007a. Texture cue based tracking system using wavelet transform and a fuzzy grammar. In Proceedings of the 5th IEEE International Conference on Industrial Informatics, vol. 1, 393--398. DOI: http://dx.doi.org/10.1109/INDIN.2007.4384789.Google ScholarGoogle Scholar
  9. Ferreira, M. J., Santos, C. P., and Monteiro, J. 2007b. Texture segmentation based on fuzzy grammar for cork parquet quality control. In Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE'07). 1832--1837. DOI: http://dx.doi.org/10.1109/ISIE.2007.4374884.Google ScholarGoogle Scholar
  10. Ferreira, M., Santos, C., and Monteiro, J. 2009. Cork parquet quality control vision system based on texture segmentation and fuzzy grammar. IEEE Trans. Ind. Electron. 56, 3, 756--765.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gao, J., Ding, X., and Zheng, J. 2000. Image pattern recognition based on examples—A combined statistical and structural-syntactic approach. In Advances in Pattern Recognition, F. J. Ferri, J. M. Inesta, A. Amin, and P. Pudil, Eds., Lecture Notes in Computer Science, vol. 1876. Springer, Berlin, 57--66. DOI: http://dx.doi.org/10.1007/3-540-44522-6_6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gidas, B. and Zelic, A. 1997. Object recognition via hierarchical syntactic models. In Proceedingsof the 13th International Conference on Digital Signal Processing (DSP'97), vol. 1, 315--318. DOI: http://dx.doi.org/10.1109/ICDSP.1997.628082.Google ScholarGoogle ScholarCross RefCross Ref
  13. Glomb, P. 2007. Image language terminal symbols from feature analysis. In Proceedings of the IEEE International Workshop on Imaging Systems and Techniques (IST'07). 1--6. DOI: http://dx.doi.org/10.1109/IST.2007.379599.Google ScholarGoogle ScholarCross RefCross Ref
  14. Hamdi, S., Abdallah, A. B., and Bedoui, M. H. 2012. Grammar-based image segmentation and automatic area estimation. In Proceedings of the 16th IEEE Mediterranean Electrotechnical Conference (MELECON'12). 356--359. DOI: http://dx.doi.org/10.1109/MELCON.2012.6196448.Google ScholarGoogle Scholar
  15. Han, F. and Zhu, S.-C. 2005. Bottom-up/top-down image parsing by attribute graph grammar. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2. Beijing, China, 1778--1785, vol. 2. 1550--5499. DOI: http://dx.doi.org/10.1109/ICCV.2005.50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Han, F. and Zhu, S.-C. 2009. Bottom-up/top-down image parsing with attribute grammar. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1, 59--73. DOI: http://dx.doi.org/10.1109/TPAMI.2008.65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hemberg, M. and OReilly, U.-M. 2004. Extending grammatical evolution to evolve digital surfaces with Genr8. In Genetic Programming, M. Keijzer, U.-M. OReilly, S. Lucas, E. Costa, and T. Soule, Eds., Lecture Notes in Computer Science, vol. 3003. Springer, Berlin, 299--308. DOI: http://dx.doi.org/10.1007/978-3-540-24650-3_28.Google ScholarGoogle Scholar
  18. Hingway, S. P. and Bhurchandi, K. M. 2011. A simple graph theoretic approach for object recognition. In Proceedings of the 4th International Conference on Emerging Trends in Engineering and Technology (ICETET'11). 200--205. DOI: http://dx.doi.org/10.1109/ICETET.2011.62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jin, Y. and Geman, S. 2006. Context and hierarchy in a probabilistic image model. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2145--2152. DOI: http://dx.doi.org/10.1109/CVPR.2006.86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kanungo, T. and Mao, S. 2003. Stochastic language models for style-directed layout analysis of document images. IEEE Trans. Image Process. 12, 5, 583--596. DOI: http://dx.doi.org/10.1109/TIP.2003.811487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kong, J., Barkol, O., Bergman, R., Pnueli, A., Schein, S., Zhang, K., and Zhao, C. 2012. Web interface interpretation using graph grammars. IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 42, 4, 590--602. DOI: http://dx.doi.org/10.1109/TSMCC.2011.2171335.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lin, W.-C. and Fu, K.-S. 1986. A syntactic approach to three-dimensional object recognition. IEEE Trans. Syst. Man Cybern. 16, 405--422. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Luo, P., He, J., Lin, L., and Chao, H. 2009. Hierarchical 3D perception from a single image. In Proceedings of the 16th IEEE International Conference on Image processing (ICIP'09). IEEE, Los Alamitos, CA, 4209--4212. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mäkinen, E. 1992. On the structural grammatical inference problem for some classes of context-free grammars. Inf. Process. Lett. 42, 1, 1--5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mao, S., Rosenfeld, A., and Kanungo, T. 2003. Stochastic attributed K-d tree modeling of technical paper title pages. In Proceedings of the 2003 International Conference on Image Processing (ICIP'03). 533--536. DOI: http://dx.doi.org/10.1109/ICIP.2003.1247016.Google ScholarGoogle Scholar
  26. Mas, J., Jorge, J. A., Sanchez, G., and Llados, J. 2008. Representing and parsing sketched symbols using adjacency grammars and a grid-directed parser. In Graphics Recognition. Recent Advances and New Opportunities, W. Liu, J. Llados, and J.-M. Ogier, Eds., Lecture Notes in Computer Science, vol. 5046. Springer, Berlin, 169--180. DOI: http://dx.doi.org/10.1007/978-3-540-88188-9_17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mas, J., Sanchez, G., and Llados, J. 2005. An adjacency grammar to recognize symbols and gestures in a digital pen framework. In Pattern Recognition and Image Analysis, J. S. Marques, N. P. de la Blanca, and P. Pina, Eds., Lecture Notes in Computer Science, vol. 3523. Springer, Berlin, 115--122. DOI: http://dx.doi.org/10.1007/11492542_15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nunes, F. L. S., Schiabel, H., and Goes, C. E. 2007. Contrast enhancement in dense breast images to aid clustered microcalcifications detection. J. Digital Imaging 20, 1, 53--66.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ogiela, L., Ogiela, M. R., and Tadeusiewicz, R. 2009. Mathematical linguistics in cognitive medical image interpretation systems. J. Math. Imaging Vision 34, 3, 328--340. DOI: http://dx.doi.org/10.1007/s10851-009-0151-4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ogiela, L., Tadeusiewicz, R., and Ogiela, M. R. 2008. Cognitive modeling in medical pattern semantic understanding. In Proceedings of the International Conference on Multimedia and Ubiquitous Engineering (MUE'08). 15--18. DOI: http://dx.doi.org/10.1109/MUE.2008.47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Parag, T., Bahlmann, C., Shet, V., and Singh, M. 2012. A grammar for hierarchical object descriptions in logic programs. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW'12). 33--38. DOI: http://dx.doi.org/10.1109/CVPRW.2012.6239171.Google ScholarGoogle Scholar
  32. Peng, S., Liu, L., Yang, X., and Sang, N. 2008. A database schema for large scale annotated image dataset. In Proceedings of the Congress on Image and Signal Processing (CISP'08). 57--62. DOI: http://dx.doi.org/10.1109/CISP.2008.49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Petrakis, E. G. M., Faloutsos, C., and Lin, K.-I. 2002. ImageMap: An image indexing method based on spatial similarity. IEEE Trans. Knowl. Data Eng. 14, 5, 979--987. DOI: http://dx.doi.org/10.1109/TKDE.2002.1033768. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Prusinkiewicz, P., Lindenmayer, A., and Hanan, J. 1988. Development models of herbaceous plants for computer imagery purposes. SIGGRAPH Comput. Graph. 22, 4, 141--150. DOI: http://dx.doi.org/10.1145/378456.378503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Qu, H., Zhu, Q., Zeng, L., Guo, M., and Lu, Z. 2008. Automata-based L-Grammar extraction from multiple images for virtual plants. In Proceedings of the 3rd International Conference on Bio-Inspired Computing: Theories and Applications (BICTA'08). 89--96. DOI: http://dx.doi.org/10.1109/BICTA.2008.4656709.Google ScholarGoogle Scholar
  36. Reddy, H. T., Karibasappa, K., and Damodaram, A. 2009. Probabilistic parser for face detection. In Proceeding of International Conference on Methods and Models in Computer Science (ICM2CS'09). 1--7. DOI: http://dx.doi.org/10.1109/ICM2CS.2009.5397986.Google ScholarGoogle ScholarCross RefCross Ref
  37. Ron, D., Singer, Y., and Tishby, N. 1995. On the learnability and usage of acyclic probabilistic finite automata. In Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT'95). ACM, New York, 31--40. DOI: http://dx.doi.org/10.1145/225298.225302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Rothrock, B. and Zhu, S.-C. 2011. Human parsing using stochastic and-or grammars and rich appearances. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops'11). 640--647. DOI: http://dx.doi.org/10.1109/ICCVW.2011.6130303.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sainz, M. and Sanfeliu, A. 1996. Learning bidimensional context-dependent models using a context-sensitive language. In Proceedings of the 13th International Conference on Pattern Recognition, vol. 4, 565--569. DOI: http://dx.doi.org/10.1109/ICPR.1996.547628. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sakakibara, Y. 1992. Efficient learning of context-free grammars from positive structural examples. Inf. Comput. 97, 1, 23--60. DOI: http://dx.doi.org/10.1016/0890-5401(92)90003-X. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sakakibara, Y. 1995. Grammatical inference: An old and new paradigm. In Algorithmic Learning Theory, K. P. Jantke, T. Shinohara, and T. Zeugmann, Eds., Lecture Notes in Computer Science, vol. 997. Springer, Berlin, 1--24. DOI: http://dx.doi.org/10.1007/3-540-60454-5_25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Sakakibara, Y. 2005. Learning context-free grammars using tabular representations. Pattern Recogn. 38, 9, 1372--1383. DOI: http://dx.doi.org/10.1016/j.patcog.2004.03.021. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sakakibara, Y. and Muramatsu, H. 2000. Learning context-free grammars from partially structured examples. In Grammatical Inference: Algorithms and Applications, A. L. Oliveira, Ed., Lecture Notes in Computer Science, vol. 1891. Springer, Berlin, 229--240. DOI: http://dx.doi.org/10.1007/978-3-540-45257-7_19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Schlecht, J., Barnard, K., Spriggs, E., and Pryor, B. 2007. Inferring grammar-based structure models from 3D microscopy data. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR'07). 1--8. DOI: http://dx.doi.org/10.1109/CVPR.2007.383031.Google ScholarGoogle Scholar
  45. Shet, V., Singh, M., Bahlmann, C., and Ramesh, V. 2009. Predicate logic based image grammars for complex pattern recognition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops'09). 7. DOI: http://dx.doi.org/10.1109/CVPRW.2009.5204328.Google ScholarGoogle Scholar
  46. Shilman, M., Liang, P., and Viola, P. 2005. Learning nongenerative grammatical models for document analysis. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'05), vol. 2, 962--969. DOI: http://dx.doi.org/10.1109/ICCV.2005.140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Si, Z. and Zhu, S.-C. 2011. Unsupervised learning of stochastic AND-OR templates for object modeling. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops'11). 648--655. DOI: http://dx.doi.org/10.1109/ICCVW.2011.6130304.Google ScholarGoogle ScholarCross RefCross Ref
  48. Siddiqi, K. and Kimia, B. B. 1996. A shock grammar for recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'96). 507--513. DOI: http://dx.doi.org/10.1109/CVPR.1996.517119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Siddiqi, K., Shokoufandeh, A., Dickenson, S. J., and Zucker, S. W. 1998. Shock graphs and shape matching. In Proceedings of the 6th International Conference on Computer Vision. 222--229. DOI: http://dx.doi.org/10.1109/ICCV.1998.710722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sipser, M. 2006. Introduction to the Theory of Computation (2nd ed.). Thomson Course Technology.Google ScholarGoogle Scholar
  51. Siskind, J., Sherman Jr, J., Polak, T., Harper, M., and Bouman, C. 2007. Spatial random tree grammars for modeling hierarchical structure in images with regions of arbitrary shape. IEEE Trans. Pattern Anal. Mach. Intell. 29, 9, 1504--1518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Soltanpour, S. and Ebrahimnezhad, H. 2010. Learning novel object parts model for object categorization. In Proceedings of the 5th International Symposium on Telecommunications (IST'10). 796--800. DOI: http://dx.doi.org/10.1109/ISTEL.2010.5734131.Google ScholarGoogle Scholar
  53. Stuckelberg, M. V. and Doermann, D. 1999. On musical score recognition using probabilistic reasoning. In Proceedings of the 5th International Conference on Document Analysis and Recognition (ICDAR'99). 115--118. DOI: http://dx.doi.org/10.1109/ICDAR.1999.791738. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Subramanian, K. G., Mary, A. R. S., and Dersanambika, K. S. 2005. Splicing array grammar systems. In Proceedings of the International Conference on Theoretical Aspects of Computing (ICTAC'05), D. Hung and M. Wirsing, Eds., Lecture Notes in Computer Science, vol. 3722. Springer, Berlin, 125--135. DOI: http://dx.doi.org/10.1007/11560647_8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Sun, R., Jia, J., Li, H., and Jaeger, M. 2009. Image-based lightweight tree modeling. In Proceedings of the 8th International Conference on Virtual Reality Continuum and its Applications in Industry (VRCAI'09). ACM, New York, 17--22. DOI: http://dx.doi.org/10.1145/1670252.1670258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Takada, Y. 1988. Grammatical inference for even linear languages based on control sets. Inform. Process. Lett. 28, 4, 193--199. DOI: http://dx.doi.org/10.1016/0020-0190(88)90208-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Toshev, A., Mordohai, P., and Taskar, B. 2010. Detecting and parsing architecture at city scale from range data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR'10). 398--405. DOI: http://dx.doi.org/10.1109/CVPR.2010.5540187.Google ScholarGoogle Scholar
  58. Trzupek, M., Ogiela, M. R., and Tadeusiewicz, R. 2009. Image content analysis for cardiac 3D visualizations. In Knowledge-Based and Intelligent Information and Engineering Systems, J. D. Velásquez, S. A. Ríos, R. J. Howlett, and L. C. Jain, Eds., Lecture Notes in Computer Science, vol. 5711. Springer, Berlin 192--199. DOI: http://dx.doi.org/10.1007/978-3-642-04595-0_24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Trzupek, M., Ogiela, M. R., and Tadeusiewicz, R. 2011. Intelligent image content description and analysis for 3D visualizations of coronary vessels. In Intelligent Information and Database Systems, N. T. Nguyen, C.-G. Kim, and A. Janiak, Eds., Lecture Notes in Computer Science, vol. 6592. Springer, Berlin, 193--202. DOI: http://dx.doi.org/10.1007/978-3-642-20042-7_20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Tylecek, R. and Sara, R. 2011. Modeling symmetries for stochastic structural recognition. In Proceedings of the IEEE International Conference on Computer Vision Workshops (ICCV Workshops'11). 632--639. DOI: http://dx.doi.org/10.1109/ICCVW.2011.6130302.Google ScholarGoogle Scholar
  61. Wang, Q. and Jiang, Z. 2009. A grammatical framework for building rooftop extraction. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing (IGARSS'09). III--334--III--337. DOI: http://dx.doi.org/10.1109/IGARSS.2009.5417768.Google ScholarGoogle Scholar
  62. Wang, W., Pollak, I., Bouman, C. A., and Harper, M. P. 2005b. Classification of images using spatial random trees. In Proceedings of the 2005 IEEE/SP 13th Workshop on Statistical Signal Processing. 449--452. DOI: http://dx.doi.org/10.1109/SSP.2005.1628637.Google ScholarGoogle ScholarCross RefCross Ref
  63. Wang, W., Pollak, I., Wong, T.-S., Bouman, C. A., Harper, M. P., and Siskind, J. M. 2006. Hierarchical stochastic image grammars for classification and segmentation. IEEE Trans. Image Process. 15, 10, 3033--3052. DOI: http://dx.doi.org/10.1109/TIP.2006.877496. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Wang, Y., Bahrami, S., and Zhu, S.-C. 2005a. Perceptual scale space and its applications. In Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV'05). Vol. 1, 58--65. DOI: http://dx.doi.org/10.1109/ICCV.2005.187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Wu, Y. and Bian, H. 2009. Image segmentation integrating generative and discriminative methods. In Proceedings of the International Conference on Web Information Systems and Mining (WISM'09). 769--774. DOI: http://dx.doi.org/10.1109/WISM.2009.159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Yao, B., Yang, X., and Wu, T. 2009. Image parsing with stochastic grammar: The Lotus Hill dataset and inference scheme. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops'09). DOI: http://dx.doi.org/10.1109/CVPRW.2009.5204331.Google ScholarGoogle Scholar
  67. Zaboli, H. and Rahmati, M. 2007. An improved shock graph approach for shape recognition and retrieval. In Proceedings of the 1st Asia International Conference on Modelling Simulation (AMS'07). 438--443. DOI: http://dx.doi.org/10.1109/AMS.2007.13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Zhu, L., Chen, Y., and Yuille, A. 2009. Unsupervised learning of probabilistic grammar-Markov models for object categories. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1, 114--128. DOI: http://dx.doi.org/10.1109/TPAMI.2008.67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Zhu, S.-C. and Mumford, D. 2006. A stochastic grammar of images. Found. Trends. Comput. Graph. Vis. 2, 4, 259--362. DOI: http://dx.doi.org/10.1561/0600000018. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Using grammars for pattern recognition in images: A systematic review

                  Recommendations

                  Reviews

                  Markus Wolf

                  Grammars were used in computer science from the beginning for designing compilers for the first programming language. They were later used in image generation (for example, L-systems were used to generate beautiful pictures of plants). Therefore, using grammars for pattern recognition in images seems to be a natural research avenue. This paper represents an overview of papers and research directions concerning the use of grammars for pattern recognition in images over the last decade. After a short introduction of the field and a discussion of older reviews, the paper continues with an explanation of how the reviewed papers where sampled. The main body of the paper presents the review results. The results are stated quantitatively in the form of graphs and tables and are clustered according to similar techniques, objectives, or type of grammar used. A qualitative analysis section includes discussion of the different pattern recognition approaches in several short sections with references to the most important papers in the field. Following the results, the authors discuss the advantages and limits of the use of grammars for pattern recognition and point to future research directions. A short conclusion closes the paper. The paper is well written and gives a nice overview of the state of affairs with many useful references for in-depth study. This is a good starting point for anyone interested in techniques for pattern recognition in images. Due to the discussion of possible research directions, it is also good for anyone searching for research topics in this area. Online Computing Reviews Service

                  Access critical reviews of Computing literature here

                  Become a reviewer for Computing Reviews.

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  Full Access

                  • Published in

                    cover image ACM Computing Surveys
                    ACM Computing Surveys  Volume 46, Issue 2
                    November 2013
                    483 pages
                    ISSN:0360-0300
                    EISSN:1557-7341
                    DOI:10.1145/2543581
                    Issue’s Table of Contents

                    Copyright © 2013 ACM

                    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                    Publisher

                    Association for Computing Machinery

                    New York, NY, United States

                    Publication History

                    • Published: 1 November 2013
                    • Accepted: 1 May 2013
                    • Revised: 1 December 2012
                    • Received: 1 March 2012
                    Published in csur Volume 46, Issue 2

                    Permissions

                    Request permissions about this article.

                    Request Permissions

                    Check for updates

                    Qualifiers

                    • research-article
                    • Research
                    • Refereed

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader