skip to main content
10.1145/2556288.2557105acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

GaussBricks: magnetic building blocks for constructive tangible interactions on portable displays

Published:26 April 2014Publication History

ABSTRACT

This work describes a novel building block system for tangible interaction design, GaussBricks, which enables real-time constructive tangible interactions on portable displays. Given its simplicity, the mechanical design of the magnetic building blocks facilitates the construction of configurable forms. The form constructed by the magnetic building blocks, which are connected by the magnetic joints, allows users to stably manipulate with various elastic force feedback mechanisms. With an analog Hall-sensor grid mounted to its back, a portable display determines the geometrical configuration and detects various user interactions in real time. This work also introduce several methods to enable shape changing, multi-touch input, and display capabilities in the construction. The proposed building block system enriches how individuals interact with the portable displays physically.

Skip Supplemental Material Section

Supplemental Material

pn0794-file3.m4v

m4v

86.9 MB

p3153-sidebyside.mp4

mp4

176.7 MB

References

  1. Anderson, D., Frankel, J. L., Marks, J., Agarwala, A., Beardsley, P., Hodgins, J., Leigh, D., Ryall, K., Sullivan, E., and Yedidia, J. S. Tangible interaction + graphical interpretation: a new approach to 3d modeling. In Proc. SIGGRAPH '00 (2000), 393--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Avrahami, D., Wobbrock, J. O., and Izadi, S. Portico: tangible interaction on and around a tablet. In Proc. UIST '11 (2011), 347--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baudisch, P., Becker, T., and Rudeck, F. Lumino: tangible blocks for tabletop computers based on glass fiber bundles. In Proc. CHI '10 (2010), 1165--1174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bianchi, A., and Oakley, I. Designing tangible magnetic appcessories. In Proc. TEI '13 (2013), 255--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brockmeyer, E., Poupyrev, I., and Hudson, S. Papillon: Designing curved display surfaces with printed optics. In Proc. UIST '13 (2013), 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chan, L., Müller, S., Roudaut, A., and Baudisch, P. CapStones and ZebraWidgets: sensing stacks of building blocks, dials and sliders on capacitive touch screens. In Proc. CHI '12 (2012), 2189--2192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fitzmaurice, G. W., Ishii, H., and Buxton, W. A. S. Bricks: laying the foundations for graspable user interfaces. In Proc. CHI '95 (1995), 442--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gorbet, M. G., Orth, M., and Ishii, H. Triangles: tangible interface for manipulation and exploration of digital information topography. In Proc. CHI '98 (1998), 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gupta, A., Fox, D., Curless, B., and Cohen, M. Duplotrack: a real-time system for authoring and guiding duplo block assembly. In Proc. UIST '12 (2012), 389--402. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hodges, S., Izadi, S., Butler, A., Rrustemi, A., and Buxton, B. ThinSight: versatile multi-touch sensing for thin form-factor displays. In Proc. UIST '07 (2007), 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ishii, H. Tangible bits: beyond pixels. In Proc. TEI '08 (2008), xv--xxv. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ishii, H., and Ullmer, B. Tangible bits: towards seamless interfaces between people, bits and atoms. In Proc. CHI '97 (1997), 234--241. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Leitner, J., and Haller, M. Geckos: combining magnets and pressure images to enable new tangible-object design and interaction. In Proc. CHI '11 (2011), 2985--2994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Leitner, J., and Haller, M. PUCs: Detecting transparent, passive untouched capacitive widgets on unmodified multi-touch displays. In Proc. ITS '13 (2013), 101--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liang, R.-H., Cheng, K.-Y., Chan, L., Peng, C.-X., Chen, M. Y., Liang, R.-H., Yang, D.-N., and Chen, B.-Y. GaussBits: Magnetic tangible bits for portable and occlusion-free near-surface tangible interactions. In Proc. CHI '13 (2013), 1391--1400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liang, R.-H., Cheng, K.-Y., Su, C.-H., Weng, C.-T., Chen, B.-Y., and Yang, D.-N. GaussSense: Attachable stylus sensing using magnetic sensor grid. In Proc. UIST '12 (2012), 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Merrill, D., Kalanithi, J., and Maes, P. Siftables: towards sensor network user interfaces. In Proc. TEI '07 (2007), 75--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Oschuetz, L., Wessolek, D., and Sattler, W. Constructing with movement: kinematics. In Proc. TEI '10 (2010), 257--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Parkes, A., and Ishii, H. Bosu: a physical programmable design tool for transformability with soft mechanics. In Proc. DIS '10 (2010), 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Piper, B., Ratti, C., and Ishii, H. Illuminating clay: a 3-d tangible interface for landscape analysis. In Proc. CHI '02 (2002), 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Prasad, L. Morphological analysis of shapes. CNLS Newsletter 139 (1997), 1--18.Google ScholarGoogle Scholar
  22. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. Make It Stand: Balancing shapes for 3D fabrication. ACM TOG 32, 4 (2013), 81:1--81:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Raffle, H. S., Parkes, A. J., and Ishii, H. Topobo: a constructive assembly system with kinetic memory. In Proc. CHI '04 (2004), 647--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rekimoto, J. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. In Proc. CHI '02 (2002), 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella, V., Kramer, K., and Silverman, B. Digital manipulatives: new toys to think with. In Proc. CHI '98 (1998), 281--287. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rosenberg, I., and Perlin, K. The UnMousePad: an interpolating multi-touch force-sensing input pad. ACM TOG 28, 3 (2009), 65:1--65:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Vertegaal, R., and Poupyrev, I. Introduction. Commun. ACM 51, 6 (2008), 26--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Watanabe, R., Itoh, Y., Asai, M., Kitamura, Y., Kishino, F., and Kikuchi, H. The soul of activecube: implementing a flexible, multimodal, three-dimensional spatial tangible interface. Comput. Entertain. 2, 4 (2004), 15--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Khoshabeh, R., Hollan, J. D., and Borchers, J. SLAP widgets: bridging the gap between virtual and physical controls on tabletops. In Proc. CHI '09 (2009), 481--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. Printed optics: 3d printing of embedded optical elements for interactive devices. In Proc. UIST '12 (2012), 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yao, L., Niiyama, R., Ou, J., Follmer, S., Della Silva, C., and Ishii, H. PneUI: Pneumatically actuated soft composite materials for shape changing interfaces. In Proc. UIST '13 (2013), 13--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yu, N.-H., Chan, L.-W., Lau, S. Y., Tsai, S.-S., Hsiao, I.-C., Tsai, D.-J., Hsiao, F.-I., Cheng, L.-P., Chen, M., Huang, P., and Hung, Y.-P. TUIC: enabling tangible interaction on capacitive multi-touch displays. In Proc. CHI '11 (2011), 2995--3004. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. GaussBricks: magnetic building blocks for constructive tangible interactions on portable displays

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2014
      4206 pages
      ISBN:9781450324731
      DOI:10.1145/2556288

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '14 Paper Acceptance Rate465of2,043submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader