skip to main content
10.1145/2556288.2557237acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Wearables and chairables: inclusive design of mobile input and output techniques for power wheelchair users

Authors Info & Claims
Published:26 April 2014Publication History

ABSTRACT

Power wheelchair users often use and carry multiple mobile computing devices. Many power wheelchair users have some upper body motor impairment that can make using these devices difficult. We believe that mobile device accessibility could be improved through designs that take into account users' functional abilities and take advantage of available space around the wheelchair itself. In this paper we present findings from multiple design sessions and interviews with 13 power wheelchair users and 30 clinicians, exploring the placement and form factor possibilities for input and output on a power wheelchair. We found that many power wheelchair users could benefit from chairable technology that is designed to work within the workspace of the wheelchair, whether worn on the body or mounted on he wheelchair frame. We present participants' preferences for chairable input and output devices, and identify possible design configurations for wearable and chairable devices.

References

  1. Anthony, L., Kim, Y., and Findlater, L. Analyzing User-Generated YouTube Videos to Understand Touchscreen Use by People with Motor Impairments. Proc. CHI 2013, ACM Press (2013) p. 1223--1232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ashbrook, D. L., Clawson, J. R., Lyons, K., Starner, T. E., & Patel, N. (2008). Quickdraw: the impact of mobility and on-body placement on device access time. Proc. CHI 2008, ACM Press (2008) pp. 219--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bailly, G., Müller, J., Rohs, M., Wigdor, D., & Kratz, S. ShoeSense: a new perspective on gestural interaction and wearable applications. Proc. CHI 2012, ACM Press (2012) pp. 1239--1248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bispo, R., & Branco, R. Designing out stigma: the role of objects in the construction of disabled people's identity. Proc. International Design & Emotion Conference (2008).Google ScholarGoogle Scholar
  5. Braga, R. A., Petry, M., Reis, L. P., & Moreira, A. P. (2011). IntellWheels: modular development platform for intelligent wheelchairs. Journal of rehabilitation research and development, 48(9), 1061.Google ScholarGoogle ScholarCross RefCross Ref
  6. Brewster, S., Lumsden, J., Bell, M., Hall, M., & Tasker, S. Multimodal 'eyes-free' interaction techniques for wearable devices. Proc. CHI 2003, ACM Press (2003) pp. 473--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buechley, L., & Hill, B. M. LilyPad in the wild: how hardware's long tail is supporting new engineering and design communities. Proc. DIS'2010, ACM Press (2010) pp. 199--207. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cook, A. M., & Polgar, J. M. (2007). Cook and Hussey's Assistive Technologies: Principles and Practice, 3rd ed. St. Louis, MO. Mosby Elsevier.Google ScholarGoogle Scholar
  9. Elliott, G. C., Ziegler, H. L., Altman, B. M., & Scott, D. R. (1982). Understanding stigma: Dimensions of deviance and coping. Deviant Behavior, 3(3), 275--300.Google ScholarGoogle ScholarCross RefCross Ref
  10. Fox, S. (2011). Americans living with disability and their technology profile. Pew Research Center's Internet & American Life Project.Google ScholarGoogle Scholar
  11. Froehlich, J., Wobbrock, J. O., & Kane, S. K. Barrier pointing: using physical edges to assist target acquisition on mobile device touch screens. Proc. ASSETS 2007, ACM Press (2007) p. 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Guerreiro, T., Nicolau, H., Jorge, J., & Gonçalves, D. Towards accessible touch interfaces. Proc. ASSSETS 2010, ACM Press (2010) p. 19--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Harrison, C., Tan, D., & Morris, D. Skinput: appropriating the body as an input surface. Proc. CHI'2010, ACM Press (2010) pp. 453--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kane, S. K., Jayant, C., Wobbrock, J. O., & Ladner, R. E. Freedom to roam: a study of mobile device adoption and accessibility for people with visual and motor disabilities. Proc. ASSETS 2009, ACM Press (2009) pp. 115--122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kaye, H. S. (2000). Computer and Internet use among people with disabilities (Vol. 13). Washington, DC: US Dept. of Education, National Institute on Disability and Rehabilitation Research.Google ScholarGoogle Scholar
  16. Kim, J., Cho, S., & Kim, S. J. (2008). Preliminary studies to develop a ubiquitous computing and healthmonitoring system for wheelchair users. Proc. ICST BodyNets 2008 (p. 3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, J., & Smith, P. (2008). Survey Study to Develop a Wheelchair-worn Computing and Health-monitoring System. Proc. RESNA 2008.Google ScholarGoogle Scholar
  18. Lin, C. T., Euler, C., Wang, P. J., & Mekhtarian, A. (2012). Indoor and outdoor mobility for an intelligent autonomous wheelchair. Proc. ICCHP 2012. (pp. 172--179). Springer Berlin Heidelberg. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Nischelwitzer, A. K., Sproger, B., Mahr, M., & Holzinger, A. (2006). MediaWheelie - a best practice example for research in multimodal user interfaces (MUIs). Proc. ICCHP 2006 pp. 999--1005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. O'Connor, T. J., Cooper, R. A., Fitzgerald, S. G., Dvorznak, M. J., Boninger, M. L., VanSickle, D. P., & Glass, L. (2000). Evaluation of a manual wheelchair interface to computer games. Neurorehabilitation and Neural Repair, 14(1), 21--31.Google ScholarGoogle ScholarCross RefCross Ref
  21. Parette, P., & Scherer, M. (2004). Assistive technology use and stigma. Education and Training in Developmental Disabilities, 39(3), 217--226.Google ScholarGoogle Scholar
  22. Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., Turner, J., & Landay, J. A. Enabling always-available input with muscle-computer interfaces. Proc. UIST 2009, ACM Press (2009) pp. 167--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Saponas, T. S., Kelly, D., Parviz, B. A., & Tan, D. S. Optically sensing tongue gestures for computer input. Proc. UIST 2009, ACM Press (2009) pp. 177--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Saponas, T. S., Harrison, C., & Benko, H. PocketTouch: Through-fabric capacitive touch input. Proc. UIST 2011, ACM Press (2011) pp. 303--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sears, A., Lin, M., Jacko, J., & Xiao, Y. (2003). When computers fade: Pervasive computing and situationally-induced impairments and disabilities. Proc. HCI International 2003. Vol. 2, pp. 1298--1302.Google ScholarGoogle Scholar
  26. Sears, A., & Young, M. (2002). Physical disabilities and computing technologies: an analysis of impairments. In The human-computer interaction handbook (pp. 482--503). L. Erlbaum Associates Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Shinohara, K., & Wobbrock, J. O. In the shadow of misperception: assistive technology use and social interactions. Proc. CHI 2011, ACM Press (2011) pp. 705--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wakita, A., & Shibutani, M. Mosaic textile: wearable ambient display with non-emissive color-changing modules. In Proc. CHI 2006. ACM Press (2006) p. 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wobbrock, J. O., Myers, B. A., Aung, H. H., & LoPresti, E. F. Text entry from power wheelchairs: edgewrite for joysticks and touchpads. Proc. ASSETS 2004, ACM Press (2004) pp. 110--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Xiao, R., Harrison, C., & Hudson, S. E. WorldKit: rapid and easy creation of ad-hoc interactive applications on everyday surfaces. Proc. CHI 2013, ACM Press (2013) pp. 879--888. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Wearables and chairables: inclusive design of mobile input and output techniques for power wheelchair users

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '14: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2014
      4206 pages
      ISBN:9781450324731
      DOI:10.1145/2556288

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '14 Paper Acceptance Rate465of2,043submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader