
SobTrA: A Software-based Trust Anchor for ARM Cortex
Application Processors

Julian Horsch, Sascha Wessel, Frederic Stumpf, and Claudia Eckert
Fraunhofer AISEC

Garching near Munich, Germany
{firstname.lastname}@aisec.fraunhofer.de

ABSTRACT
In this paper, we present SobTrA, a Software-based Trust
Anchor for ARM Cortex-A processors to protect systems
against software-based attacks. SobTrA enables the imple-
mentation of a software-based secure boot controlled by a
third party independent from the manufacturer. Compared
to hardware-based trust anchors, our concept provides some
other advantages like being updateable and also usable on
legacy hardware. The presented software-based trust anchor
involves a trusted third party device, the verifier, locally con-
nected to the untrusted device, e.g., via the microSD card
slot of a smartphone. The verifier is verifying the integrity of
the untrusted device by making sure that a piece of code is
executed untampered on it using a timing-based approach.
This code can then act as an anchor for a chain of trust
similar to a hardware-based secure boot. Tests on our pro-
totype showed that tampered and untampered execution of
SobTrA can be clearly and reliably distinguished.

Categories and Subject Descriptors: D.4.6 [Operating
Systems]: Security and Protection

Keywords: Software-based Trust Anchor; Self-checksum-
ming Code; Smartphone; Mobile Security; ARM Architec-
ture; Secure Boot

1. INTRODUCTION
A widely used technique to improve embedded devices se-

curity and especially smartphone security is a secure boot
process [1], which can be used to enforce that only signed
code can be executed on the smartphone. Core of a hardware-
based secure boot is the software stored in the Read-Only
Memory (ROM) of the device. This first stage of the boot
process, called root of trust or trust anchor, is the first code
to be executed at system start. The main task of this trust
anchor is to measure the next stage, i.e., to verify its signa-
ture, and to load it if the verification was successful, building

© 2014 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in CODASPY ’14: Proceedings of the 4th ACM Conference on Data and Ap-
plication Security and Privacy, March 3–5, 2014, San Antonio, Texas, USA,
https://doi.org/10.1145/2557547.2557569

the basis for a chain of trust controlled by the manufacturer.
The hardware-based secure boot approach has some down-
sides. First, it can only be utilized by the authority that
has control over the ROM of the device. Second, the secure
boot may not be added to legacy devices. Finally, if the
trust anchor code has a vulnerability or the key is compro-
mised, there is no way to restore the security properties on
the affected devices.

To overcome the aforementioned disadvantages, we pro-
pose the concept of a Software-based Trust Anchor (SobTrA)
as the basis for a software-based secure boot. The concept is
developed for the ARM architecture. SobTrA provides the
guarantee that a piece of code runs untampered on the boot-
ing platform. With that, the software-based secure boot can
establish a chain of trust on the initially untrusted platform.
In contrast to the hardware-based concept, the guarantee is
not provided to the manufacturer but to a trusted device,
the verifier, which is connected to the untrusted platform.
The verifier could, for example, be realized as microSD card
issued by a trusted third party (e.g., a company) and con-
nected via Secure Digital Input Output (SDIO) or Serial Pe-
ripheral Interface (SPI) to the untrusted platform. Figure 1
shows our concept for a software-based secure boot process.
The software-based secure boot can conceptually be initial-
ized at any point during runtime of the system. The basic
idea is to let the verifier measure the time the untrusted
platform needs to perform a self-checksumming calculation
initialized by some challenge. If the verifier receives the
correct result in a timeframe which does not exceed some
previously determined upper bound, the untrusted platform
is verified successfully. Because of the strong hardware de-
pendency, existing primitives for software-based externally
verifiable untampered execution cannot be simply used to
realize SobTrA on ARM.

This paper is organized as follows. In Section 2, we de-
scribe our attacker model and assumptions. In Section 3,
we give an overview of existing research. Section 4 intro-
duces the basic concept and protocol of SobTrA. The ARM

Untrusted Platform
ROM Code / 

Bootloader / Kernel
Software-based Trust 

Anchor

Verifier
(Trusted Device)

E.g. Bootloader

measure
control flow
communication

Figure 1: Software-based secure boot process

https://doi.org/10.1145/2557547.2557569


Cortex-A8 specific design and implementation of the SobTrA
checksum function is presented in Section 5. Section 6 dis-
cusses the secure execution environment to be established in
SobTrA. Finally, we present the experimental results on our
prototype in Section 7 and conclude in Section 8.

2. ATTACKER MODEL & ASSUMPTIONS
The main goal of SobTrA is to prevent remote attacks,

e.g., via the internet. Therefore, in our attacker model, the
attacker has complete control over the software on the un-
trusted platform, but is not allowed to do hardware mod-
ifications or use hardware-based debug facilities (JTAG).
Furthermore, DMA-based attacks are out-of-scope for this
paper since they require platform specific countermeasures.
Our assumptions for the execution of SobTrA are:

• The exact hardware configuration of the untrusted plat-
form must be known to the verifier, including CPU
type (e.g. ARM Cortex-A8) and clock speed.

• The verifier can be sure that the messages it receives
are coming from the untrusted platform, excluding
Man-In-The-Middle (MITM) attacks.

• No proxy or relay attack is possible. These are attacks
where the untrusted platform uses the help of another
device to fulfill the challenge from the verifier.

Especially in the context of a smartphone with a fixed,
low-latency connection to the verifier and not allowing hard-
ware modifications, these assumptions can be considered
quite reasonable.

3. RELATED WORK
The first approach for externally-verifiable execution was

proposed by Kennell and Jamieson in 2003 [9] for an x86
architecture platform. Their primitive, called Genuinity, is
a self-checksumming function that additionally to its own
memory layout includes performance counters, into the check-
sum. Unfortunately, the approach suffers from some serious
problems as Shankar et al. describe in [17] (substitution at-
tacks, see Section 4.2.1).

The first concept targeting embedded devices was SWATT,
proposed in 2004 by Seshadri et al. [16] for an Atmel 8-bit
microcontroller. SWATT tries to reduce the time needed
for one iteration of the underlying checksum function main
loop to a minimum, while still including some fast accessible
CPU state inputs like the program counter and status reg-
ister. This enables the verifier to measure even very small
overheads introduced by attacker’s code trying to circum-
vent the self-checksumming property. Another crucial ad-
vantage is that the execution time is only dependent on the
number of iterations and not on the challenge itself. There-
fore, it is not necessary to measure the “correct” time for
a response from the untrusted platform for every challenge-
response pair on a trusted device incorporating the target
hardware. Later publications by Seshadri et al. refine the
approach and adapt it to other architectures, namely x86
with Pioneer [15, 13] and TI MSP430 with ICE [14].

Newer publications introduce other concepts to implement
checksum functions with similar properties. Either by gener-
ating the checksum function itself as the challenge [11] or by
introducing a memory bottleneck during the checksum cal-
culation to slow down the attacker’s code [5, 7]. Downside

VerifierUntrusted Platform
(ARM SoC)

Software-based Trust 
Anchor (SobTrA)

Hash Function

Send Function

Checksum 
Function

2. Request Challenge
3. Challenge

4. Calculate
Checksum

5. Send Checksum

7. Send Hash

Next Boot Stage
(Executable)

6. Hash 9. Branch

4. Measure 
Time

1. Precompute Challenge-
Response Pair

Secure Execution 
Environment

8. Allow Access to 
Decryption Keys

Copy of SobTrA

Hash of Next Boot 
Stage (Executable)

Hash Function

Send Function

Checksum 
Function

Figure 2: Basic concept of SobTrA and the software-
based secure boot process

of the first approach is that it reintroduces a higher variance
for the checksum function execution time. Downsides of the
latter approach are that it takes more time to execute and
is harder to be used at system runtime, requiring massive
memory swapping.

SobTrA is based on the concepts by Seshadri et al. [16, 15,
14, 13] but presents a new secure boot use case and, most im-
portantly, is designed and implemented on a different proces-
sor architecture, ARMv7-A, resulting in substantial changes
to the underlying algorithm design and implementation.

4. SOBTRA CONCEPT
The typical hardware architecture for the SobTrA secure

boot concept consists of a ARM System on a Chip (SoC)
device as the untrusted platform, e.g., a smartphone, and
a low performance device of arbitrary architecture as the
verifier. Both are interconnected via a local, low-latency
physical interface, such as SPI or SDIO. The core of the
proposed software-based secure boot, as shown in Figure 1,
is the software-based trust anchor SobTrA. An overview of
the SobTrA functionality is depicted in Figure 2.

4.1 Basic Structure and Protocol
SobTrA on the untrusted platform consists of three main

parts. First, there is the checksum function, which is the
core of the software primitive. In the first communication
step, SobTrA requests a challenge (2.). The verifier either
pre-computes (1.) challenge-response pairs to accelerate the
protocol or computes one on demand directly before sending
the challenge back to the untrusted platform (3.). SobTrA
uses the challenge to initialize the checksum function which
then calculates a checksum (4.) over itself and the other two
main parts of SobTrA while the verifier measures the time.
Afterwards, SobTrA initializes a secure execution environ-
ment for the rest of the trust anchor to run in, preventing
an attacker from gaining control via exceptions (see Sec-
tion 6). The second part of SobTrA is the send function
which is responsible for sending the result checksum back to
the verifier (5.). The last part inside the checksummed re-
gion is the hash function, which computes (6.) a hash digest
of the next stage in the boot process. The following steps
depend on the application scenario. In our secure boot, the
untrusted platform sends the hash digest to the verifier (7.)
who checks if the hash is correct and only allows access to
decryption keys/functionality (8.) if the verification is suc-



cessful. The keys could, for example, protect the root file
system and therefore prevent a further boot. All parts of
SobTrA must be self-contained, i.e., they must not call code
outside the checksummed region and must not cause excep-
tions.

The verifier contains an exact copy of the SobTrA binary
image. It is therefore able to calculate the correct check-
sum to validate the checksum received from the untrusted
platform. Besides the challenge, the verifier also sends the
number of loop iterations for the checksum function which
determines the maximum time the untrusted platform is al-
lowed to take for returning the correct checksum. This max-
imum time must be pre-measured once on a trusted device
identical to the untrusted platform and is valid for all chal-
lenges with the same iteration number. After receiving the
checksum result from the untrusted platform, the verifier
checks if the time taken is below the pre-measured thresh-
old and whether the checksum is correct. If both conditions
are met, the secure boot can succeed.

4.2 Checksum Function Design
The checksum function must provide the following ba-

sic property : A tampered checksum function either yields
a wrong checksum or causes a measurable execution time
overhead. Figure 3 shows the basic structure of the check-
sum function in the context of the other SobTrA parts. The
first step towards the basic property is to make the check-
sum function self-checksumming, incorporating itself and all
other parts of SobTrA into the checksum. This forces an
attacker, trying to modify a part of SobTrA, to manipulate
accesses to these memory regions to avoid yielding a wrong
checksum. This increases computation time and therefore
generates a measurable overhead. The function mainly con-
sists of one main loop, in which a word from memory is
read, transformed and included into the checksum together
with CPU state input. An attacker trying to circumvent
the self-checksumming property always introduces overhead
inside this main loop. Therefore, even very small overheads
can be made measurable by simply increasing the number
of loop iterations. The epilogue code is mainly responsible
for initializing the secure execution environment for the rest
of the trust anchor (discussed in Section 6).

4.2.1 Common Attack Types
There are two basic types of attacks against such a check-

sum function: Substitution attacks and memory copy at-
tacks. In a substitution attack, the attacker replaces parts
of the trust anchor code, for which he then tries to circum-
vent the self-checksumming property specifically. Figure 4
visualizes an example. In a memory copy attack, the at-
tacker modifies the code but still keeps an untampered ver-
sion somewhere in memory. The attacker’s tampered code
then computes the checksum by redirecting all memory reads

Checksum Function

Epilogue

Checksum Loop
Initialization

Hash Function
Send Function

Memory 
Read

Figure 3: Checksum function structural overview

Next Boot Stage

SobTrA

Adversary Code

Next Boot Stage

Modified SobTrA

Untampered Substitution Attack

Figure 4: Substitution attack example: The final
branch is substituted to redirect the flow to adver-
sary code.

performed in the context of the self-checksumming function-
ality to the untampered image. Figure 5 illustrates the two
basic forms of memory copy attacks.

4.2.2 Desired Properties
Seshadri et al. [16, 15] postulated some properties which

should be fulfilled by a checksum function to provide the
aforementioned basic property of either producing a wrong
checksum or causing a measurable overhead when tampered.
These are the basis for the SobTrA checksum function prop-
erties explained in the following: (1.) The memory which
is getting checksummed should be traversed in a pseudo-
random manner to prevent substitution attacks. (2.) The
checksum function should include CPU state inputs, e.g.,
Program Counter (PC) and Status Register (SR), into the
checksum, mainly to prevent memory copy attacks. (3.)
The checksum function should be as strongly-ordered and
non-parallelizable as possible to prevent addition of mali-
cious instructions without overhead. (4.) Iterative parts,
i.e., the main loop, of the checksum function should be as
small as possible to allow the measurement of even very
small attacker overheads and to reduce complexity for the
code optimization. (5.) The checksum function implementa-
tion should be time optimal. The optimality could be made
sure in the future using tools like Denali [8]. (6.) The check-
sum function execution time should have a low variance, i.e.,
only depend on the number of loop iterations to be able to
do a verification for random challenges. (7.) To prevent pre-
computation of the checksum, the checksum function should
be initialized by a random challenge. (8.) To slow down code
added by an adversary (register spilling), the checksum func-
tion should use all available CPU registers.

5. CORTEX-A8 CHECKSUM FUNCTION
A checksum function implementation must be designed

very specifically for a processor architecture to provide the
introduced properties. SobTrA is designed and implemented
for the ARMv7-A architecture and, currently, even more
specifically for Cortex-A8 processors. Despite this speci-
fity, SobTrA provides the basis for an implementation on
other ARM cores. For multi-core processors SobTrA could
be combined with the generic approach by Yan et al. [19].
The ARMv7-A architecture has some specialties which must

SobTrA

SobTrA

Tampered SobTrA

Tampered SobTrA

SobTrA

Untampered Memory Copy Attack 1

Memory Copy Attack 2

Figure 5: Two forms of memory copy attacks



1: Input:
y: number of iterations of the function
challenge initializing C, rand and r13

2: Output: Checksum C
3: Variables:

[startcode,endcode]: checksummed memory area
daddr: address of current memory access
rand: current pseudorandom number
r13: intermediate result from previous iteration
t: variable to save parallel processing results
j: index of current checksum part
l: loop counter
SR: status (flags) register
PC: program counter

4: for l = y to 0 do
5: // T-Function [10] updates rand
6: rand← rand + (rand2 ∨ 5) mod 232

7: // Update memory address with rand
8: daddr ← ((Cj−1 ⊕ rand) ∧MASK) + start
9: // Update checksum part with index j

10: Cj ← Cj + PC
11: t← mem[daddr]
12: Cj ← t⊕ rotate(Cj)
13: t← t + r13
14: r13← r13 + Cj

15: t← t⊕ l + Cj−1 ⊕ rand + daddr ⊕ Cj−2

16: Cj ← Cj + PC ⊕ l +c Cj−1 ⊕ rand +c daddr⊕Cj−2 +c t
17: Cj ← SR⊕ rotate(Cj)
18: // Update index j
19: j ← (j + 1) mod 10
20: end for

Figure 6: SobTrA checksum function algorithm

be considered in the checksum function design: First, the
Program Counter (PC) is represented as an explicit regis-
ter while the Status Register (SR) is not accessible like a
normal register and flags must be set explicitly. Second,
memory accesses are always done by dedicated instructions
(load/store architecture). Third, many instructions allow
the second operand to be rotated/shifted without an addi-
tional instruction (and without costs at least on Cortex-A8).
Finally, there are two different instruction sets with differ-
ent instruction encodings: ARM and Thumb–2. The latter
mixes 16 and 32 bit wide instructions for higher code density.

It is crucial that the hardware is configured to provide
the maximum possible performance for running the check-
sum function. Every unused optimization could potentially
be abused by an attacker to hide latencies introduced by his
code. So, the CPU must be configured to run the highest
possible clock speed available in software and branch predic-
tion as well as all caches must be activated. Latter requires
the Memory Management Unit (MMU) to be enabled [3].

Besides these performance initializations, it is also neces-
sary to temporarily disable all interrupts to prevent an at-
tacker from gaining control during or shortly after the check-
sum function. Our implementation includes all these initial-
izations. An attacker cannot change these settings without
reducing performance and therefore failing a verification.

5.1 Basic Algorithm
Figure 6 shows pseudocode for the SobTrA checksum func-

tion main loop. The loop body can be structured into three
parts:

1. Calculation of the next pseudorandom number, i.e.,
the pseudorandom update (Line 6).

r15
(PC)

r14
(LR)

r13
(SP)r12r1 r8 r11r3 r4 r6 r10r9r7r2r0 r5

loopctr
rand

daddr rs chk0 chk1 chk2 chk3 chk4 chk5 chk6 chk7 chk8 chk9

Figure 7: Mapping of ARM registers to their names
in the SobTrA checksum function

2. Calculation of the address of the next memory word
to be incorporated into the checksum, i.e., the data
address update (Line 8).

3. Update of the current checksum part (Lines 10 to 17).

Together with a final loop counter decrementation, these
three parts are called basic block or block in the following.
The checksum is split into several parts to fill the avail-
able registers. Part 2 and 3 of the algorithm are specific to
the checksum part updated in the current iteration. The
checksum update algorithm part is highly architecture spe-
cific and the design ideas will therefore be explained later
together with the implementation. Most of the previously
introduced checksum function properties, for example the
pseudorandom memory traversal and CPU state inputs (PC
and SR), are fulfilled obviously. The function is strongly
ordered and non-parallelizable by making blocks dependent
on previous results, interdependencies between subparts of
the loop body and by interleaving add +, add-with-carry +c

and xor ⊕ operations for updating the checksum parts.

5.2 Main Loop Implementation
The checksum function implementation runs in Supervisor

Mode. The presented assembler code uses named registers,
as specified in Figure 7, to increase readability. There is
one dedicated register for each running variable in the algo-
rithm and an additional scratch register named rs to hold
different values, especially the t variable, during a loop it-
eration. Ten registers (chk0 to chk9) store the checksum
parts resulting in a 320 bit wide checksum. To make most
efficient use of available registers, the algorithm loop is un-
rolled in ten checksum part specific blocks, so the index j in
the pseudocode has no equivalent in the actual implementa-
tion. The SobTrA checksum function implementation must
be encoded using the Thumb–2 instruction set because the
checksum function leverages the mixed instruction size (16
and 32 bits) to prevent a specific form of memory copy attack
(discussed in Section 5.3.2). In Thumb–2 encoding, the reg-
isters r13 (Stack Pointer) and r15 (PC) are restricted to be
usable only in some instructions. Register r13 can therefore
not be used as a checksum register or working register. To
fulfill the property of using all registers, r13 is occupied by
saving an intermediate result to be included into the check-
sum in the next block. So it maps directly to the identically
named variable in the algorithm pseudocode. To reduce the
possibilities for an attacker to insert instructions without
overhead, we did a manual cycle-exact analysis of the check-
sum function implementation for the Cortex-A8 dual-issue,
in-order pipeline using information provided by [2]. Based
on the analysis (verified by performance counters) we made
sure that the presented implementation makes highly effi-
cient use of the pipeline features, so that a basic block ex-
ecutes in only 31 processor cycles. The branch instruction
at the end of the unrolled loop and the self-modification se-
quence added in Section 5.3.3 account for another 0.1 and
0.42 cycles per block.



1 mul rs, rand , rand @ x2

2 orr rs, rs, 0x5 @ x2 ∨ 5

3 add rand , rs, rand @ (x2 ∨ 5) + x

Figure 8: Pseudorandom generator update sequence

The checksum function is initialized with a 320 bit wide
challenge filling all checksum registers with a starting value.
The seed for the random number generator is derived from
the challenge by xoring their parts. Besides that, also r13

is initialized with some value derived from rand.
Like other concepts [16, 11, 15], SobTrA uses a T-Function

[10] for the pseudorandom update (Figure 6, Line 6),
mainly because it can be implemented with only few in-
structions as shown in Figure 8. Therefore, an optimal im-
plementation can be ensured more easily. The calculation
only depends on the previous value of rand and uses the
scratch register rs to hold intermediate results.

The SobTrA data address update implementation for
the first checksum function block is shown in Figure 9. For
optimal performance, only word-aligned addresses are gen-
erated. Eight KiB beginning at the start_code label are
checksummed, which is enough to include all SobTrA parts.
The start_code label address is generated PC-relative using
the adr instruction.

Figure 10 shows the SobTrA implementation of the check-
sum update sequence. The code updates the first check-
sum part register and is therefore specific to the first check-
sum function block of the unrolled loop. To keep the scratch
register rs, used for loading the memory value (Line 10),
alive and unavailable to an attacker, SobTrA processes it
with a sequence of operations parallel to the checksum reg-
ister and incorporates it into the checksum just before it is
needed again to load the Current Program Status Register
(CPSR) (the ARM status register). These operations fill the
Cortex-A8 dual-issue pipeline optimally and therefore cause
nearly no overhead. Some operations are used in their flag-
setting variants (mnemonic suffixed with “s”) to impede the
forgery of the CPSR. This is particularly important for the
addition immediately before the mrs instruction, which reads
the CPSR, since it prevents reordering of this instruction to
an upper position. The mrs instruction is quite expensive,
costing about eight CPU execution cycles on the Cortex-A8
[2]. Nevertheless, it is not possible to forge the CPSR in
the same or less time since an attacker would have to forge
the dynamically set flags. To keep register r13 unavailable
to an attacker, SobTrA uses two instructions (Lines 12 and
13) which incorporate an intermediate result from the pre-
vious block into the checksum. To reduce the overhead, to
maintain the order of the add/eor sequence and to harden
against certain memory copy attacks (discussed later), this
is done via an indirection over the scratch register (i.e., vari-
able t) which is included into the checksum near the end of
the sequence (Line 25). Further details of the implemen-
tation are discussed in the next section with regard to the
specific attacks they prevent.

4 eors daddr , chk9 , rand @ derive random value
5 ldr rs, =0x7ff <<2 @ load mask in scratch register
6 and daddr , daddr , rs @ mask random to get an offset
7 adr rs, start_code @ gen. start address PC-relative
8 add daddr , daddr , rs @ add offset to start address

Figure 9: SobTrA data address update implementa-
tion for the first block

9 add chk0 , chk0 , pc @ C0 ← C0 + PC
10 ldr rs, [daddr] @ t← mem[daddr]
11 eor chk0 , rs, chk0 , ror 1 @ C0 ← t⊕ rotate(C0)
12 add rs, rs, r13 @ t← t + r13
13 add r13 , chk0 @ r13← r13 + C0

14 add chk0 , chk0 , pc @ C0 ← C0 + PC
15 eors rs, rs, loopctr @ t← t⊕ l
16 eors chk0 , chk0 , loopctr @ C0 ← C0 ⊕ l
17 add rs, rs, chk9 @ t← t + C9

18 adcs chk0 , chk0 , chk9 @ C0 ← C0 +c C9

19 eors rs, rs, rand @ t← t⊕ rand
20 eors chk0 , chk0 , rand @ C0 ← C0 ⊕ rand
21 add rs, rs, daddr @ t← t + daddr
22 adcs chk0 , chk0 , daddr @ C0 ← C0 +c daddr
23 eors rs, rs, chk8 @ t← t⊕ C8

24 eors chk0 , chk0 , chk8 @ C0 ← C0 ⊕ C8

25 adcs chk0 , chk0 , rs @ C0 ← C0 +c t
26 mrs rs, cpsr @ load the SR
27 eor chk0 , rs, chk0 , ror 1 @ C0 ← SR⊕ rotate(C0)
28 sub loopctr , loopctr , 1 @ decrement l

Figure 10: SobTrA checksum update sequence (first
block)

5.3 Attack Prevention
In the following, attacks on the checksum function are

discussed and how SobTrA prevents them. With one block
taking 31.52 cycles to execute, an overhead of only one CPU
cycle per block (32.52/31.52−1 = 3.17%) is enough to be easily
measurable (see Section 7). Therefore, it is sufficient to show
that an attack generates an overhead of at least one cycle to
be prevented successfully.

5.3.1 Substitution Attacks
A successful substitution attack replaces parts of the check-

summed memory region without changing the resulting check-
sum or causing an execution time overhead. The most ba-
sic forms of substitution attacks are prevented by the pseu-
dorandom memory traversal of the algorithm, which forces
an attacker to insert, at least, a basic conditional (if-like)
statement into the checksum loop to check if a location pre-
viously modified by him is read and to hide the modification
accordingly. This easily causes an overhead of at least one
cycle. Like Seshadri et al. [14] we use the Coupon Collec-
tor’s Problem to calculate the number of iterations needed
to include every memory word at least once with high prob-
ability. For 8 KiB (equaling 2048 32-bit words) this results
in 2048 ln 2048 + 2048 ≈ 17663 iterations.

Castelluccia et al. introduced an attack [4] which exploits
the fact that the Most Significant Bit (MSB) is treated the
exact same way by an addition as by a bitwise exclusive-or.
Therefore, a sequence of alternating additions and exclusive-
ors, like it is the basis for updating the checksum, yields the
same result if the MSB is inverted in an even number of
operands. In order to prevent such attacks, SobTrA imple-
ments, like other concepts [12], flag-setting add-with-carry
(adcs) operations instead of simple additions.

Unfortunately, Thumb–2 does not allow the PC as operand
to any add-with-carry operation. This results in an attack
where the MSBs of the PC in the two PC incorporating in-
structions, in the following called PC inclusions (Figure 10,
Lines 9 and 14), cancel each other out. So a SobTrA exe-
cution from a location with inverted MSBs would result in
the same checksum. SobTrA prevents such an attack by ro-
tating the checksum between both PC inclusions (Line 11).
Since the rotation is piggybacked by the eor instruction, it
does not cost additional cycles on the Cortex-A8 processor.



Block 2

Block 1

Inner

Outer

add chk0, chk0, PC

add chk0, chk0, PC

add chk1, chk1, PC

add chk1, chk1, PC

Block 3

Block 2

Block 1
add chk0, chk0, PC

add chk0, chk0, PC

add chk1, chk1, PC

add chk1, chk1, PC

Block 3

Offset Load (32 bit)

Offset Load (32 bit)
Normal Load (16 bit)

32 bits

16 bits
Normal Load (16 bit)

16 bits

Untampered Offset Attack

Figure 11: PC corruption for the offset attack on
the checksum function

Furthermore, SobTrA prevents MSB attacks spanning over
multiple iterations of the unrolled loop with a rotation at the
end of every block (Line 27) and the address update being
dependent on previous block’s checksum register.

5.3.2 Memory Copy Attacks Type 1
In memory copy attacks of this type, the attacker runs

his malicious checksum function in the originally intended
place, but computes the checksum over an untampered im-
age stored somewhere else in memory (see Figure 5 in the
middle). Since the ARM architecture allows a load instruc-
tion to have a fixed offset without additional costs, such an
attack could be realized quite easily by replacing the load
instruction with an offset variant. For a successful offset at-
tack, the untampered image has to be in range of the load off-
set. This range is different depending on the used instruction
encoding. To prevent the offset attack, the SobTrA check-
sum function leverages the fact that there are different size
encodings of the load (ldr) instruction in the Thumb–2 in-
struction set. There is only one 16-bit encoding (T1), which
allows loads with the daddr base register. For this encoding,
the range of offsets is 0-124 in multiples of four. This is not
sufficient for a successful attack since the unrolled checksum
function loop itself is about 1 KiB in size and can there-
fore not be passed. If the attacker uses a 32-bit instruction
encoding which allows offsets to be big enough, he implic-
itly changes the position of the following PC inclusions and
therefore corrupts the checksum. The deviation of the PC
inclusions from their original position cumulates for the fol-
lowing blocks in the unrolled loop. Figure 11 illustrates the
situation for the attacker. To repair the corrupted PC inclu-
sions, the attacker may either forge the PCs, which in fact
leads to a type 2 memory copy attack, or try to balance the
bigger offset load instruction by encoding other instructions
shorter. To prevent such attacks, we examined the SobTrA
code to use the smallest possible encoding (e.g. use eors in-
stead of eor). Especially in the inner region (see Figure 11)
this is important since there only 16 bits must be saved for
a successful attack. Saving 16 bits in the outer region is not
enough as the distance between the two PC inclusions must
be correct as well. Many instructions can only be encoded in
their short form (16 bits) if the operands are from the lower
half of the register bank (registers 0-7) so SobTrA maps the
frequently used variables to lower register.

5.3.3 Memory Copy Attacks Type 2
In this type of memory copy attacks, the untampered

SobTrA image is kept in its originally intended position and

the attacker checksums it from another position. There are
three spots in the checksum function which have to be con-
sidered for such an attack because of their PC usage:

• The base address is generated PC-relative (Figure 9,
Line 7) and the adr instruction must therefore be in
range of the untampered code start.

• The two PC inclusions (Figure 10, Lines 9 and 14)
must be forged. For the first forgery, the scratch reg-
ister rs is available, for the second it is not.

The attacker is free in terms of code size and encoding be-
cause he forges the PC inclusions anyway. He is even free
to use the ARM instruction set instead of Thumb–2 because
the mrs instruction does not read the actual values of the
processor state bits, encoding if the processor runs in ARM
or Thumb mode [3]. We identified two different type 2 mem-
ory copy attacks to be discussed in the following.

Basic PC Forgery. An attacker might try to replace
the PC register operand with immediates, i.e., static values
to be encoded directly into the instruction. Because of the
restrictions on immediates in the ARM architecture, such
an attack would be only possible for unrealistic simple ad-
dresses. As the place for the checksum function is specified
by the verifier, this does not pose a problem.

An attacker might try to forge the PC values with basic
arithmetic operations on his own PC. This is only possible if
the attacker’s code is in range of the untampered code. The
first PC inclusion can then be forged using the free scratch
register rs. The second PC inclusion cannot be forged like
this because there is no spare register available. So, forging
the second PC value forces the attacker to spill a register,
i.e., store it to memory and restore it afterwards, easily caus-
ing an overhead of at least one cycle. Besides the additional
store and load instruction, spilling a register in the most
cases incurs overhead for an extra address generation.

Shifting Attack. This attack is based on the idea to
forge the original PC only by shifting the actual attacker’s
PC, exploiting free shifts on Cortex-A8 CPUs. The ma-
licious checksum function is positioned in a way so that
its base address equals the base address of the untampered
checksum function logically left-shifted by one. Thumb–2
does not allow shifts/rotates on the PC, but the attacker is
free to use ARM encoding which allows shifting and adding
of the PC in the same instruction. The attacker has to align
its code (e.g., by inserting NOPs) so that its shifting PC
inclusions are in positions where they yield the correct PC
just by right-shifting.

The SobTrA checksum function prevents such an attack
by running from addresses which cannot be generated by a
simple logical or arithmetic right-shift (possibly configuring
the MMU accordingly). The key characteristic of such an
address is that its two most significant bits are“10”. Further-
more, the attack is prevented because of the PC-relative base
address generation in the data address update sequence, re-
quiring the attacker to either do a shift to get in range and
subtract an offset (always two instructions), or to do a mem-
ory load, both causing at least a one cycle overhead.

5.3.4 TLB Desynchronization Attack
Wurster et al. in 2005 introduced [18] a technique which

exploits Harvard-style Translation Lookaside Buffers (TLBs)



to attack self-checksumming code. The basic idea of the at-
tack is to desynchronize the TLBs in a way that the same
Virtual Address (VA) is mapped to a malicious copy of the
checksum function in the Instruction Translation Lookaside
Buffer (ITLB) and to an untampered image in the Data
Translation Lookaside Buffer (DTLB). Then, all instructions
are fetched from the malicious checksum function in physi-
cal memory, but the load instructions, used to checksum the
code, access the untampered copy in physical memory, re-
sulting in a quasi hardware-accelerated memory copy attack.
We successfully implemented the attack on ARM Cortex-A8
in a less generic but much easier way than described by
Wurster et al. leveraging the explicit DTLB invalidation op-
erations available on ARM.

Giffin et al. [6] in 2005 proposed a technique using self-
modifying code to strengthen self-checksumming code against
TLB desynchronization attacks. Self-modifying code ac-
cesses its code via the DTLB, and therefore corrupts the
checksum in case of a TLB desynchronization. Like some
related work concepts [11, 13] for x86 SobTrA uses self-
modifying code to prevent such attacks but employs a dif-
ferent approach since, in contrast to x86, the ARM archi-
tecture requires explicit and expensive cache maintenance
operations when implementing self-modifying code, mainly
to propagate the changes from the data cache to the instruc-
tion cache. SobTrA optimizes the self-modification sequence
by configuring the level 1 cache to be write-through and the
level 2 cache to be write-back and by removing unnecessary
barriers. Still, The necessary instruction cache invalidation
costs about 60 cycles, which is too long in comparison to a
block’s execution time of 31 cycles to do a self-modification
in every block. Therefore, SobTrA reduces the per-block
overhead by doing a self-modification only every n-th block.
The self-modification code is executed every n/10-th unrolled
loop iteration. It randomly picks one block and changes
the rotation immediate of a specific instruction (Figure 10,
Line 11) in the block to a random value. An attacker who
simulates the self-modification functionality in a static way,
has to do the same computations every n-th block to up-
date his untampered image with the modified instructions.
He saves 60 cycles (60/n per block) from not having to issue
the cache line flush, but for the simulation additional in-
structions are required in every attacker’s block (e.g., load
number of rotations and rotate by register). This simulation
causes at least one cycle overhead per block since there is no
spare register available and additional instructions corrupt
the PC inclusions, especially in the inner region where the
simulation has to be done (see Section 5.3.2).

6. SECURE EXECUTION ENVIRONMENT
SobTrA must ensure that an attacker cannot gain control

after the successful computation of the checksum. Other-
wise, such an attacker could use the valid checksum to obtain
the trust of the verifier and run arbitrary code afterwards.

Assuming that the checksum function has finished success-
fully, it is ensured that only checksummed and untampered
code is executed afterwards. Therefore, the only possible
way for an attacker to gain control of the execution is to trig-
ger an exception. The ARM literature uses the term excep-
tion to denote all kinds of interrupts or traps and the term
interrupt to denote only asynchronous interrupts. SobTrA
establishes a secure execution environment by replacing the
exception vector table with an own table (containing dead

0 10 20 30 40
Sample

78500

79000

79500

80000

80500

81000

81500

82000

M
ea

su
re

d
Ti

m
e

[µ
s]

x̄ = 81861.16 σ = 2.54

x̄ = 81309.10 σ = 0.70

x̄ = 79364.00 σ = 2.14

x̄ = 78811.00 σ = 0.00

Adversary (+1 Cycle) + SPI Communication
Adversary (+1 Cycle)
Normal + SPI Communication
Normal

Figure 12: Consecutive measurements of execution
time for 1.5 million iterations

loops) stored inside the checksummed region immediately
after the checksum calculation and before sending the result.
Code inside the checksummed-region may not cause any ex-
ceptions or call unmeasured and unchecksummed code.

It must also be ensured that an attacker cannot gain con-
trol before the secure execution environment is established,
i.e., during and shortly after the checksum function execu-
tion. For that, we analyzed the different exception types
regarding their attack potential. As shown before, it can be
assumed that there are no successful attacks on the check-
sum function itself, i.e., it is guaranteed that the SobTrA
code runs untampered:

Undefined Instruction and Supervisor Call. Synchro-
nous exceptions are caused explicitly by instructions.
Since the SobTrA code runs untampered and does not
trigger any of these, they do not pose a threat.

IRQ, FIQ and external Abort. External interrupts are
disabled by SobTrA and their status is incorporated
into the checksum via the CPSR.

Prefetch Abort. These are triggered by the MMU when
fetching instructions from invalid memory addresses.
The checksum function and secure execution environ-
ment establishment code reside on the same minimal
page, which prevents Prefetch Aborts.

Data Abort. These are triggered by the MMU when ac-
cessing invalid data addresses. Since the checksummed
region is about 8 KiB in size, a Data Abort might be
caused by an attacker during the checksum calcula-
tion. As the calculation is not yet finished when such
an exception might occur and every execution of the
exception takes long in relation to one checksum func-
tion block, it cannot be abused by an attacker.

7. EXPERIMENTAL RESULTS
We implemented a prototype, which is able to run a com-

plete software-based secure boot using the SobTrA prim-
itive. The prototype hardware consists of a Beagleboard
(Rev. C3, Cortex-A8, 600 MHz) as the untrusted platform
and a mbed LPC1768 microcontroller as verifier, intercon-
nected via SPI. SobTrA on the Beagleboard is implemented
as bare-metal, standalone binary image containing the check-
sum function, an SPI driver for the communication protocol
and a minimal ARM Linux kernel bootloader as well as a



11902 23965 36029 48093 60157 72220 84284 96348
Number of iterations

0

20

40

60

80

100

120

140

160

180
M

ea
su

re
d

Ti
m

e
[µ
s]

Overhead

Figure 13: Measured attacker overhead for 1000 to
100000 iterations

minimal SHA-1 implementation to hash and start a trusted
kernel. To support arbitrary hardware as verifier, we imple-
mented a SobTrA simulator in C which is used to compute
challenge-response pairs on the mbed LPC1768.

First, we measured the SobTrA execution time several
times with the same number of iterations in the untampered
case and in case of a minimal attack causing a one cycle
overhead per checksum function block. For each case, we
differentiated pure execution time and time measured by
the verifier via SPI at 3 MHz. The resulting plot is depicted
in Figure 12 with mean value (x̄) and standard deviation
(σ). With an overhead of 81861/79364 − 1 ≈ 3.15% for the
communication including case and the low latency of the
SPI bus, even attacker overheads smaller than one cycle are
measurable quite well.

In a second step, we measured the execution time, includ-
ing communication overheads, for an increasing number of
iterations. Figure 13 shows the overhead generated by the
attacker (one cycle overhead), i.e., the difference between
normal and tampered execution time. On the average, about
24000 iterations are needed to generate 40 µs overhead for
the attacking case, sufficient to be reliably measured. The
24000 iterations are also sufficient to cover SobTrA’s 8 KiB
in the random memory traversal (see Section 5.3.1). The
SobTrA execution time in this case is about 1.8 ms.

8. CONCLUSION
In this paper, we introduced SobTrA, a software-based

trust anchor for ARM Cortex-A processors. As our main
application scenario, the concept of a software-based secure
boot for embedded devices, e.g., smartphones without usable
hardware-based secure boot, was presented. In this concept,
a verifier device attached to an untrusted platform obtains
the guarantee that the boot process on the untrusted device
is running untampered. The checksum function provides the
guarantee to the verifier that SobTrA runs untampered by
performing an optimized, self-checksumming calculation in
a certain, upper-bounded timeframe.

We implemented a Cortex-A8 specific checksum function
and showed that it is resistant against known attacks. Fur-
thermore, we implemented a secure execution environment,
preventing attacker interception by making sure that no ex-
ceptions can be triggered during the checksum calculation
and replacing the exception vector table afterwards. Our
prototype is able to run a software-based secure boot up to
a Linux kernel. Experiments revealed that the approach is

very robust in terms of timing, making it possible to clearly
distinguish untampered and tampered execution even for
very small overheads introduced by an attacker.

9. ACKNOWLEDGMENTS
Parts of this work were supported by the German Federal

Ministry of Education and Research (BMBF) under grant
01BY1200A within the project HIVE.

10. REFERENCES
[1] W. Arbaugh, D. Farber, and J. Smith. A secure and reliable

bootstrap architecture. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, May 1997.

[2] ARM Limited. ARM Cortex-A8 Technical Reference Manual,
May 2010.

[3] ARM Limited. ARM Architecture Reference Manual –
ARMv7-A and ARMv7-R edition, July 2011.

[4] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On
the difficulty of software-based attestation of embedded
devices. In Proceedings of the 16th ACM conference on
Computer and communications security, CCS ’09, 2009.

[5] R. W. Gardner, S. Garera, and A. D. Rubin. Detecting code
alteration by creating a temporary memory bottleneck. Trans.
Info. For. Sec., 4:638–650, December 2009.

[6] J. T. Giffin, M. Christodorescu, and L. Kruger. Strengthening
software self-checksumming via self-modifying code. In
Proceedings of the 21st Annual Computer Security
Applications Conference, pages 23–32, 2005.

[7] M. Jakobsson and K.-A. Johansson. Practical and secure
software-based attestation. In Workshop on Lightweight
Security Privacy: Devices, Protocols and Applications
(LightSec), pages 1–9, March 2011.

[8] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed
superoptimizer. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and
implementation, PLDI ’02, pages 304–314, 2002.

[9] R. Kennell and L. H. Jamieson. Establishing the genuinity of
remote computer systems. In Proceedings of the 12th
conference on USENIX Security Symposium, 2003.

[10] A. Klimov and A. Shamir. New cryptographic primitives based
on multiword T-Functions. In B. Roy and W. Meier, editors,
Fast Software Encryption, volume 3017 of Lecture Notes in
Computer Science, pages 1–15. 2004.

[11] L. Martignoni, R. Paleari, and D. Bruschi. Conqueror:
Tamper-proof code execution on legacy systems. In Proceedings
of the 7th international conference on Detection of intrusions
and malware, and vulnerability assessment, DIMVA’10, 2010.

[12] A. Perrig and L. V. Doorn. Refutation of “On the difficulty of
software-based attestation of embedded devices”.

[13] A. Seshadri. A software primitive for externally-verifiable
untampered execution and its applications to securing
computing systems. PhD thesis, Carnegie Mellon University,
2009.

[14] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla.
SCUBA: Secure code update by attestation in sensor networks.
In Proceedings of the 5th ACM workshop on Wireless
security, WiSe ’06, pages 85–94, 2006.

[15] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and
P. Khosla. Pioneer: Verifying code integrity and enforcing
untampered code execution on legacy systems. In Proceedings
of the twentieth ACM symposium on Operating systems
principles, SOSP ’05, pages 1–16, 2005.

[16] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. SWATT:
Software-based attestation for embedded devices. In
Proceedings of the 2004 IEEE Symposium on Security and
Privacy, pages 272–282, 2004.

[17] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not
sufficient to authenticate software. In Proceedings of the 13th
conference on USENIX Security Symposium, SSYM’04, 2004.

[18] G. Wurster, P. C. v. Oorschot, and A. Somayaji. A generic
attack on checksumming-based software tamper resistance. In
Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 127–138, 2005.

[19] Q. Yan, J. Han, Y. Li, R. H. Deng, and T. Li. A software-based
root-of-trust primitive on multicore platforms. In Proceedings
of the 6th ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’11, 2011.


	Introduction
	Attacker Model & Assumptions
	Related Work
	SobTrA Concept
	Basic Structure and Protocol
	Checksum Function Design
	Common Attack Types
	Desired Properties


	Cortex-A8 Checksum Function
	Basic Algorithm
	Main Loop Implementation
	Attack Prevention
	Substitution Attacks
	Memory Copy Attacks Type 1
	Memory Copy Attacks Type 2
	TLB Desynchronization Attack


	Secure Execution Environment
	Experimental Results
	Conclusion
	Acknowledgments
	References

