skip to main content
research-article

Artificial life and cellular automata based automated test case generator

Published: 11 February 2014 Publication History

Abstract

Manual test data generation is carried out by using the ability of neurons to recognize patterns. The nervous system and the brain coordinate to generate test cases, which are capable of finding potential faults. Automated test data generators lack the ability to produce efficient test cases because they do not imitate natural processes. This paper proposes using Artificial Life based systems for generating test cases. Cellular Automata and Langton's loop have been used to accomplish the above task. Cellular Automata are parallel distributed systems capable of reproducing using self generated patterns. These fascinating techniques have been amalgamated with standard test data generation techniques to give rise to a methodology, which generates test cases for white box testing. Langton's Loops have been used to generate test cases for Black Box Testing. The approach has been verified on a set of 20 programs. The programs have been selected on the basis of their Lines of Code and utility. The results obtained have been verified using Average Probability of Fault Detection. This paper also proposes a new framework capable of crafting test cases taking into account the oracle cost.

References

[1]
Pan, J. 1999. Software Testing, Dependable Embedded Systems. CARNEGIE Mellon University Spring.
[2]
S. Mahmod. 2007. A Systematic Review of Automated Test Data Generation Techniques. Master Thesis, Blekinge Institute of Tech., Sweden.
[3]
M. J. Gallagher & V. Lakshmi-Narasimhan. 1997. ADTEST: a test data generation suite for ada software systems. IEEE Transactions on Software Engineering. Vol. 23 (8), pp. 473--484.
[4]
J. Offutt, Z. Jin & J. Pan. 1994. The Dynamic Domain Reduction Procedure for Test Data Generation: Design and Algorithms. Technical Report ISSE.
[5]
Bhasin, H., Singla, N., & Sharma, S. 2013. Cellular Automata Based Test data Generation. ACM Sigsoft, Software Engineering Notes. 38 (4).
[6]
Bhasin, H., & Singla, N. 2013. Cellular-Genetic Automata Based Test data Generation. ACM Sigsoft, Software Engineering Notes. 38 (5).
[7]
Bhasin, H., Shewani, & Goyal, D. 2013. Test Data Generation using Artificial Life. International Journal of Computer Applications. Vol. 67, No.12, pp. 34--39.
[8]
Shiba, T., Tsuchiya, T., & Kikuno, T. 2004. Using artificial life techniques to generate test cases for combinatorial testing. Computer Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International. 72 - 77 vol.1, pp. 28--30.
[9]
Ali M. Alakeel. 2010. A Framework for Concurrent Assertion-Based Automated Test Data Generation. University of Tabuk. Saudi Arabia.
[10]
Ramamoorthy, C. 1976. On the automated generation of program test data. Transactions on Software Engineering. SE-2, 4, 293--300.
[11]
Miller, W., & Spooner, D. 1976. Aytomatic generation of floating-point test data. Transactions on Software Engineering. SE-2, 3, 223--226.
[12]
Clarke, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE Trans. Sofrware Eng. SE- 2, 3, 215--222.
[13]
Srivastava, P. R., & Kim, T.-h. 2009. Application of Genetic Algorithm in Software Testing. International Journal of Software engineering and its Applications. 3, 4, 87--96.
[14]
Miller, J., Reformat, M., & Zhang, H. 2006. Automatic test data generation using genetic algorithm and program dependence graphs. Information and Software Technology. 48, 7, 586--605.
[15]
Sthamer, H. 1996. The automatic generation of software test data using genetic algorithms. Ph.D. Thesis, University of Glamorgan, Pontypridd, Wales, UK.
[16]
Pargas, R., Harrold, M., & Peck, R. 1999. Test data generation using genetic algorithms. Journal of Software Testing, Verification and Reliability. 9, 4, 263--282.
[17]
Wegener, J., Baresel, A., & Sthamer, H. 2001. Evolutionary test environment for automatic structural testing. Journal of Information and Software Technology. 43, 14, 841--854.
[18]
Girgis, M. 2005. Automatic test data generation for data flow testing using a genetic algorithm. Journal of Universal Computer Science. 11, 5, 898--915.
[19]
Gong, D., Zhang, W., & Yao, X. 2011. Evolutionary generation of test data for many paths coverage based on groupings. Journal of Systems and Software. 84, 12, 2222--2233.
[20]
Sofokleous, A. A., & Andreou, S. A. 2008. Automatic, evolutionary test data genereation for dynamic software testing. Journal of Systems and Software. 81, 11, 1883--1898.
[21]
Lin, J.-C., & Yeh, P.-L. 2001. Automatic test data generation for path testing using GAs. Information Sciences: an International Journal. 131, 1-4, 47--64.
[22]
Blanco, R., Tuya, J., Adenso-Dáz, B. 2009. Automated test data generation using a scatter search approach. Information and Software Technology, 51, 4, 708--720.
[23]
Abreu, B. T., Martins, E., and Sousa, F. L. 2007. Generalized extremal optimization: an attractive alternative for test data generation. GECCO, 1138.
[24]
Gupta, N., Mathur, A. P., & Soffa, M. L. 1998. Automated test data generation using an iterative relaxation method. Proceedings of the 6th ACM SIGSOFT international symposium on Foundations of software engineering. 231--244.
[25]
Becerra, R. L., Sagarna, R., and Yao, X. 2009. An evalution of Differential Evolution in software test data generation. IEEE Confress on Evolutionary Computation. IEEE, Trondheim. 2850--2857.
[26]
Liu, S., & Chen, Y. 2008. A relation-based method combining functional and structural testing for test case generation. Journal of Systems and Software. 81, 2, 234--248.
[27]
Diaz, E., Tuya, J., Blanco, R., & Dolado, J. J. 2008. A tabu search algorithm for structural software testing. Computers and Operations Research. 35, 10, 3052--3072.
[28]
Gong, D., Tian, T., & Yao, X. 2012. Grouping target paths for evolutionary generation of test data in parallel. Journal of Systems and Softwares. 85, 11, 2531--2540.
[29]
Chen, J., Zhu, L., Shen, J., Wang, Z., and Wang, X. (2006). An Approach on Automatic Test Data generation with Predicate Constraint Solving Technique. Internation Journal of Information Technology. 12, 3, 132--141.
[30]
A. Gotlieb, B. Botella and M. Reuher, "Automatic Test Data Generation using Constraint Solving Techniques", Proceeding of ISSTA 98, 1998, pp. 53--62.
[31]
C. Lin and P. L. Yeh, "Automatic Test Data Generation for Path Testing Using GAs", Elsevier Information Sciences 131, 2001, pp. 47--64.
[32]
H. D. Chu, J. E. Dobson and I. C. Liu, "FAST: A Framework for Automating Statistical-based Testing", Software Quality Journal, Vol.6, pp. 13--36, 1997.
[33]
M. Gupta, F. Bastani, L. Khan and I. L. Yen, "Automated Test Data Generation using MEA-Graph Planning", Proceedings of the 16
[34]
B. Korel and A. M. Al-Yami, "Assertion-oriented automated test data generation", Proceedings of the 18th international conference on Software engineering, Berlin, Germany, 1996, pp. 71--80.
[35]
M. H. Liu, Y. G. Gao, J. H. Shan, J. H. Liu, L. Zhang and J. S. Sun, "An Approach to Test Data Generation for Killing Multiple Mutants", Proceedings of 22.
[36]
E. Diaz, J. Tuya, and R. Blanco, "Automated Software Testing using a Metaheuristic technique Based on Tabu Search", Proceedings of the 18.
[37]
Bhasin, H. 2012. Corpuscular Random Number Generator. International Journal of Information and Electronics Engineering, vol. 2, no. 2, pp. 197--199.

Cited By

View all
  • (2018)A Literature Survey of Applications of Meta-heuristic Techniques in Software TestingSoftware Engineering10.1007/978-981-10-8848-3_47(497-505)Online publication date: 13-Jun-2018
  • (2015)Neural Network-Based Automated Priority AssignerProceedings of the Second International Conference on Computer and Communication Technologies10.1007/978-81-322-2526-3_20(183-190)Online publication date: 11-Sep-2015
  • (2014)Toward a secured automated test-data generator using S-BoxACM SIGSOFT Software Engineering Notes10.1145/2659118.265912739:5(1-5)Online publication date: 17-Sep-2014
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGSOFT Software Engineering Notes
ACM SIGSOFT Software Engineering Notes  Volume 39, Issue 1
January 2014
193 pages
ISSN:0163-5948
DOI:10.1145/2557833
  • Editor:
  • Will Tracz
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 February 2014
Published in SIGSOFT Volume 39, Issue 1

Check for updates

Author Tags

  1. artificial life
  2. automated test data generation
  3. cellular automata
  4. testing

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)A Literature Survey of Applications of Meta-heuristic Techniques in Software TestingSoftware Engineering10.1007/978-981-10-8848-3_47(497-505)Online publication date: 13-Jun-2018
  • (2015)Neural Network-Based Automated Priority AssignerProceedings of the Second International Conference on Computer and Communication Technologies10.1007/978-81-322-2526-3_20(183-190)Online publication date: 11-Sep-2015
  • (2014)Toward a secured automated test-data generator using S-BoxACM SIGSOFT Software Engineering Notes10.1145/2659118.265912739:5(1-5)Online publication date: 17-Sep-2014
  • (2014)Cost-priority cognizant regression testingACM SIGSOFT Software Engineering Notes10.1145/2597716.259772239:3(1-7)Online publication date: 4-Jun-2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media