skip to main content
research-article

A Multiple-FPGA parallel computing architecture for real-time simulation of soft-object deformation

Published: 10 March 2014 Publication History

Abstract

Hardware-based parallel computing is proposed for acceleration of finite-element (FE) analysis of linear elastic deformation models. An implementation of the Preconditioned Conjugate Gradient algorithm on N Field Programmable Gate Array (FPGA) devices solves the large linear system of equations arising from the FE discretization. The system employs a large number of customized fixed-point computing units with a high-throughput memory architecture. An implementation of this scalable architecture on four Altera EP3SE110 FPGA devices yields a peak performance of 604 Giga Operations per second. This enables haptic simulation of a 3-dimensional deformable object of 21000 elements at an update rate of 400Hz.

References

[1]
A. Alsaraira, I. Brown, R. McColl, and F. Lim. 2007. Instrument-tissue segment interaction using finite element modeling. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'07). 2760--2763.
[2]
M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. 2010. A parallel preconditioned conjugate gradient solver for the poisson problem on a multi-gpu platform. In Proceedings of the 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing. 583--592.
[3]
K. J. Bathe. 1996. Finite Element Procedures. Prentice Hall.
[4]
N. Bell and M. Garland. 2008. Efficient sparse matrix-vector multiplication on cuda. NVIDIA Tech. Rep. NVR-2008-004, NVIDIA Corporation.
[5]
M. Bro-Nielsen. 1998. Finite element modeling in surgery simulation. Proc. IEEE 86, 3, 490--503.
[6]
L. Buatois, G. Caumon, and B. Lévy. 2007. Concurrent number cruncher an efficient sparse linear solver on the gpu. In Proceedings of the High Performance Computation Conference (HPCC'07).
[7]
H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Lee, and S. Cotin. 2010. GPU-based real-time soft tissue deformation with cutting and haptic feedback. Progress Biophys. Mol. Biol. 103, 2, 159--168.
[8]
H. Delingette, G. Subsol, S. Cotin, and J. Pignon. 1994. A craniofacial surgery simulation testbed. Visualiz. Biomed. Comput. 2359, 1, 607--618.
[9]
M. Delorimier. 2005. Floating-point sparse matrix-vector multiply for FPGAs. Master's thesis, California Institute of Technology Pasadena, CA.
[10]
M. Delorimier and A. Dehon. 2005. Floating-point sparse matrix-vector multiply for fpgas. In Proceedings of the ACM/SIGDA 13th International Symposium on Field-Programmable Gate Arrays (FPGA'05). ACM, New York, 75--85.
[11]
S. P. Dimaio and S. E. Salcudean. July 2005. Interactive simulation of needle insertion models. IEEE Trans. Biomed. Eng. 52, 7, 1167--1179.
[12]
M. Ferrant, A. Nabavi, B. Macq, P. Black, F. Jolesz, R. Kikinis, and S. Warfield. 2002. Serial registration of intraoperative mr images of the brain. Med. Image Anal. 6, 4.
[13]
G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris. 2008. Understanding the performance of sparse matrix-vector multiplication. In Proceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP'08). 283--292.
[14]
P. Hinterseer and E. Steinbach. 2006. A psychophysically motivated compression approach for 3d haptic data. In Proceedings of the 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 35--41.
[15]
J. Hu, S. Quigley, and A. Chan. 2008. An element-by-element preconditioned conjugate gradient solver of 3d tetrahedral finite elements on an fpga coprocessor. In Proceedings of the International Conference on Field Programmable Logic and Applications (FPL'08). 575--578.
[16]
K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom. 2001. The Finite Element Method for Engineers 4th Ed. Wiley.
[17]
L. Jerabkova, T. P. Wolter, N. Pallua, and T. Kuhlen. 2005. Adaptive soft tissue deformation for a virtual reality surgical trainer. Stud. Health Technol. Inform. 111, 219--222.
[18]
N. Kapre and A. Dehon. 2009. Parallelizing sparse matrix solve for spice circuit simulation using fpgas. In Proceedings of the International Conference on Field-Programmable Technology (FPT'09). 190--198.
[19]
G. Karniadakis and R. M. II Kirby. 2003. Parallel Scientific Computing in C++and MPI: A Seamless Approach to Parallel Algorithms and Their Implementation. Cambridge University Press.
[20]
A. Kinsman and N. Nicolici. 2011. Automated range and precision bit-width allocation for iterative computations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30, 9, 1265--1278.
[21]
S. Li and W. K. Liu. 2007. Meshfree Particle Methods. Springer.
[22]
A. Liu, F. Tendick, K. Cleary, and C. Kaufmann. 2003. A survey of surgical simulation: Applications, technology, and education. Presence: Teleoperators Virtual Environ. 12, 6, 599--614.
[23]
Y. Liu, S. Jiao, W. Wu, and S. De. 2008. Gpu accelerated fast fem deformation simulation. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS'08). 606--609.
[24]
R. Mafi, S. Sirouspour, B. Mahdavikhah, B. Moody, K. Elizeh, A. Kinsman, and N. Nicolici. 2009. A parallel computing platform for real-time haptic interaction with deformable bodies. IEEE Trans. Haptics 3, 3.
[25]
B. Mahdavikhah, R. Mafi, S. Sirouspour, and N. Nicolici. 2010. Haptic rendering of deformable objects using a multiple fpga parallel computing architecture. In Proceedings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA'10). ACM, New York, 189--198.
[26]
B. Marami, S. Sirouspour, and D. Capson. 2011. Model-based 3D/2D deformable registration of mr images. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 4880--4883.
[27]
U. Meier and R. Eigenmann. 1991. Parallelization and performance of conjugate gradient algorithms on the cedar hierarchial-memory multiprocessor. ACM SIGPLAN No. 26, 7, 178--188.
[28]
U. Meier, O. López, C. Monserrat, M. Juan, and M. Alcaiz. 2005. Real-time deformable models for surgery simulation: A survey. Comput. Methods Programs Biomed. 77, 3, 183--197.
[29]
S. Moghimi, S. Sirouspour, and P. Malysz. 2008. Haptic-enabled collaborative training with generalized force and position mappings. In Proceedings of the Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 287--294.
[30]
A. Nealen, M. Mueller, R. Keiser, E. Boxerman, and M. Carlson. 2006. Physically based deformable models in computer graphics. Comput. Graph. Forum 25, 4, 809--836.
[31]
Y. Saad. 2003. Iterative Methods for Sparse Linear Systems. SIAM.
[32]
H. F. Shi and S. Payandeh. 2008. Gpu in haptic rendering of deformable objects. In Proceedings of the 6th International Conference on Haptics (EuroHaptics'08). Springer, 163--168.
[33]
B. Smith, P. Bjorstad, and W. Gropp. 2004. Domain Decomposition. Cambridge University Press.
[34]
G. D. Smith. 1986. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press.
[35]
F. L. Stasa. 1985. Applied Finite Element Analysis for Engineers. Holt, Rinehart, and Winston.
[36]
J. Sun, G. Peterson, and O. Storaasli. 2007. Sparse matrix-vector multiplication design on fpgas. In Proceedings of the 15th Annual IEEE Symposium on Field-Programmable Custom Computing Machines. 349--352.
[37]
Z. A. Taylor, M. Cheng, and S. Ourselin. 2007. Real-time nonlinear finite element analysis for surgical simulation using graphics processing units. Med. Image Comput. Comput. Assist. Interv. 4791, 701--708.
[38]
B. Thomaszewski, S. Pabst, and W. Blochinger. 2007. Exploiting parallelism in physically-based simulations on multi-core processor architectures. In Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization. 69--76.
[39]
W. Wiggers, V. Bakker, A. Kokkeler, and G. Smit. 2007. Implementing the conjugate gradient algorithm on multi-core systems. In Proceedings of the International Symposium on System-on-Chip. 1--4.
[40]
X. Wu and F. Tendick. Multigrid integration for interactive deformable body simulation. In Proceedings of the International Symposium on Medical Simulation (ISMS'04). S. Cotin and D. Metaxas, Eds., Lecture Notes in Computer Science, vol. 3078, Springer, 92--104.
[41]
Z. Yan, L. Gu, P. Huang, S. Lv, X. Yu, and X. Kong. 2007. Soft tissue deformation simulation in virtual surgery using nonlinear finite element method. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'07). 3642--3645.
[42]
D. Zerbato, S. Galvan, and P. Fiorini. 2007. Calibration of mass spring models for organ simulations. In Proceedings of the International Conference on Intelligent Robots and Systems. 370--375.
[43]
J. Zhang, S. Payandeh, and J. Dill. 2002. Haptic subdivision: An approach to defining level-of-detail in haptic rendering. In Proceedings of the 10th Symposium on Haptic Interfaces For Virtual Environments and Teleoperator Systems.
[44]
Y. Zhong, B. Shirinzadeh, G. Alici, and J. Smith. 2005. A new methodology for deformable object simulation. In Proceedings of the IEEE International Conference on Robotics and Automation. 1902--1907.
[45]
L. Zhuo and V. K. Prasanna. 2005. Sparse matrix-vector multiplication on FPGAs. In Proceedings of the 13th International Symposium on Field-Programmable Gate Arrays. 63--74.

Cited By

View all
  • (2024)A Hardware Solver for Simultaneous Linear Equations with Multistage Interconnection NetworkProceedings of the 14th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies10.1145/3665283.3665299(81-89)Online publication date: 19-Jun-2024
  • (2019)Haptic interaction for needle insertion training in medical applications: The state-of-the-artMedical Engineering & Physics10.1016/j.medengphy.2018.11.00263(6-25)Online publication date: Jan-2019

Index Terms

  1. A Multiple-FPGA parallel computing architecture for real-time simulation of soft-object deformation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Embedded Computing Systems
      ACM Transactions on Embedded Computing Systems  Volume 13, Issue 4
      Regular Papers
      November 2014
      647 pages
      ISSN:1539-9087
      EISSN:1558-3465
      DOI:10.1145/2592905
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Published: 10 March 2014
      Accepted: 01 November 2012
      Received: 01 June 2012
      Published in TECS Volume 13, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Parallel computing
      2. conjugate gradient method
      3. deformation modeling
      4. field-programmable gate array
      5. finite-element method
      6. hardware acceleration
      7. high-performance computing
      8. real-time simulation
      9. soft-tissue modeling

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Funding Sources

      • Ontario Centres of Excellence (OCE) for this project
      • Quanser Consulting Inc., the Health Technology Exchange (HTX)

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)8
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 18 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)A Hardware Solver for Simultaneous Linear Equations with Multistage Interconnection NetworkProceedings of the 14th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies10.1145/3665283.3665299(81-89)Online publication date: 19-Jun-2024
      • (2019)Haptic interaction for needle insertion training in medical applications: The state-of-the-artMedical Engineering & Physics10.1016/j.medengphy.2018.11.00263(6-25)Online publication date: Jan-2019

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media