skip to main content
10.1145/2560519.2560533acmconferencesArticle/Chapter ViewAbstractPublication PagesispdConference Proceedingsconference-collections
research-article

Timing-driven, over-the-block rectilinear steiner tree construction with pre-buffering and slew constraints

Published:30 March 2014Publication History

ABSTRACT

In this paper, we study a fundamental and crucial problem of building timing-driven over-the-block rectilinear Steiner tree (TOB-RST) with pre-buffering and slew constraints. We pre-characterize the tree topology and buffer distribution to provide accurate timing information for our final RST construction. In most previous work, the routing resources over the IP blocks were simply treated as routing blockages. Our TOB-RST could reclaim the ``wasted'' over-the-block routing resources while meeting user-specified timing (slack and slew) constraints. Before fixing topology, a topology-tuning is performed based on location of buffers to improve timing without increasing buffering cost. Experiments demonstrate that TOB-RST can significantly improve the worst negative slack (WNS) with even less buffering and wirelength compared with other slack-driven obstacle-avoiding rectilinear Steiner tree (SD-OARST) algorithms.

References

  1. 2012 Overall Roadmap Technology Characteristics (ORTC) Tables. http://www.itrs.net/Links/2012ITRS/Home2012.htm.Google ScholarGoogle Scholar
  2. G. Ajwani, C. Chu, and W. Mak. FOARS: FLUTE Based Obstacle-Avoiding Rectilinear Steiner Tree Construction. In Proc. ISPD, pages 194--204, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. C. J. Alpert, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T. Quay, S. S. Sapatnekar, A. J. Sullivan, and P. Villarrubia. Buffered Steiner Trees for Difficult Instances. In Proc. ISPD, pages 4--9, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H. B. Bakoglu. Circuits, interconnections, and packaging for VLSI. Addison-Wesley, 1990.Google ScholarGoogle Scholar
  5. M. Borah, R. M. Owens, and M. J. Irwin. An edge-based heuristic for Steiner routing. IEEE TCAD, 13(12):1563--1568, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chung-Kuan Cheng, Ting-Ting Y. Lin, and Ching-Yen Ho. New performance driven routing techniques with explicit area/delay tradeoff and simultaneous wire sizing. In Proc. DAC, pages 395--400, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. C. Chu and Y. Wong. FLUTE: Fast Loopup Table Based Rectilinear Steiner Minimal Tree Algorithm for VLSI Design. IEEE TCAD, 27(1):70--83, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. J. Cong, L. He, K. Khoo, C. K., and D. Z. Pan. Interconnect Design for Deep Submicron ICs. In Proc. ICCAD, pages 478--485, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J. Cong, K. Leung, and D. Zhou. Performance-Driven Interconnect Design Based on Distributed RC Delay Model. In Proc. DAC, pages 606--611, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. Closing the gap: Near-optimal Steiner trees in polynomial time. IEEE TCAD, 13(11):1351--1365, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. S. Hu, C.J. Alpert, J. Hu, S.K. Karandikar, Z. Li, W. Shi, and C.N. Sze. Fast algorithms for slew-constrained minimum cost buffering. IEEE TCAD, 26(11):2009--2022, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Huang and E. F. Young. An Exact Algorithm for the construction of Rectilinear Steiner Minimum Trees among Complex Obstacles. In Proc. DAC, pages 164--169, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. T. Huang and E. F.Y. Young. Construction of rectilinear Steiner minimum trees with slew constraints over obstacles. In Proc. ICCAD, pages 144--151, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. k. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins. Rectilinear Steiner Trees with Minimum Elmore Delay. In Proc. DAC, pages 381--386, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. B. Kahng and B. Liu. Q-Tree: A New Iterative Improvement Approach for Buffered Interconnect Optimization. In Proc. IEEE Annual Symp. on VLSI, pages 183--188, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan. Closed Form Expressions for Extending Step Delay and Slew Metrics to Ramp Inputs. In Proc. ISPD, pages 24--31, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. L. Li, Z. Qian, and E. F. Young. Generation of Optimal Obstacle-avoiding Rectilinear Steiner Minimum Tree. In Proc. ICCAD, pages 21--25, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. Li and E. F. Young. Obstacle-avoiding Rectilinear Steiner Tree Construction. In Proc. ICCAD, pages 523--528, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Y. Lin, S. Chang, and Y. Li. Critical-trunk-based obstacle-avoiding rectilinear Steiner tree routings and buffer insertion for delay and slack optimization. IEEE TCAD, 30(9):1335--1348, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ion I. Mandoiu, Vijay V. Vazirani, and Joseph L. Ganley. A new heuristic for rectilinear Steiner trees. IEEE TCAD, 19(10):1129--1139, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Okamoto and J. Cong. Interconnect Layout Optimization by Simultaneous Steiner Tree Construction and Buffer Insertion. In Proc. Asia and South Pacific Design Automation Conf., pages 44--49, 1996.Google ScholarGoogle Scholar
  22. P. J. Osler. placement driven synthesis case studies on two sets of two chips: hierarchical and flat. In Proc. ISPD, pages 190--197, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Pan, C. Chu, and P. Patra. A Novel Performance-Driven Topology Design Algorithm. In Proc. Asia and South Pacific Design Automation Conf., pages 244--249, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. M. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane steiner tree problems: a computational study, 2000.Google ScholarGoogle Scholar
  25. Y. Zhang, A. Chakraborty, S. Chowdhury, and D. Z. Pan. Reclaiming Over-the-IP-Block Routing Resources With Buffering-Aware Rectilinear Steiner Minimum Tree Construction. In Proc. ICCAD, pages 137--143, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Timing-driven, over-the-block rectilinear steiner tree construction with pre-buffering and slew constraints

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ISPD '14: Proceedings of the 2014 on International symposium on physical design
        March 2014
        180 pages
        ISBN:9781450325929
        DOI:10.1145/2560519

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 30 March 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        ISPD '14 Paper Acceptance Rate14of40submissions,35%Overall Acceptance Rate62of172submissions,36%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader