skip to main content
research-article

RMDDS: Reed-muller decision diagram synthesis of reversible logic circuits

Published: 06 March 2014 Publication History

Abstract

In this article, we propose a flexible and efficient reversible logic synthesizer. It exploits the complementary advantages of two methods: Reed-Muller Reversible Logic Synthesis (RMRLS) and Decision Diagram Synthesis (DDS), and is thus called Reed-Muller Decision Diagram Synthesis (RMDDS). RMRLS does not scale to a large number of qubits (i.e., quantum bits). DDS tools, even though efficient, add a large number of ancillary qubits and typically incur much higher quantum cost than necessary. RMDDS overcomes these obstacles. It is flexible in the sense that users can either optimize the number of qubits or the quantum cost in the circuit implementation. It is also efficient because the circuits can be synthesized within user-defined CPU times. This combination of flexibility and efficiency has been missing from synthesizers presented earlier. When used to synthesize reversible functions, RMDDS reduces the number of qubits by up to 79.2% (average of 54.6%) when the synthesis objective is to minimize the number of qubits and the quantum cost by up to 71.5% (average of 35.7%) when the synthesis objective is to minimize quantum cost, relative to DDS methods. For irreversible functions (which are automatically embedded in reversible functions), the corresponding best (average) reductions in the number of qubits is 42.1% (22.5%) when minimizing the number of qubits, and in quantum cost, it is 63.0% (25.9%) when minimizing quantum cost.

References

[1]
W. Athas, L. Svensson, J. Koller, N. Tzartzanis, and Y.-C. Chou E. 1994. Low-power digital systems based on adiabatic-switching principles. IEEE Trans. VLSI Syst. 2, 4, 398--407.
[2]
A. Barenco, C. H. Bennett, R. Cleve, D. P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter. 1995. Elementary gates for quantum computation. Phys. Rev. A 52, 5, 3457--3467.
[3]
B. Becker, R. Drechsler, and M. Theobald. 1995. OKFDDs versus OBDDs and OFDDs. In Proceedings of the International Colloquium on Automata Languages and Programming, 475--486.
[4]
C. H. Bennett. 1973. Logical reversibility of computation. IBM J. Res. Dev. 17, 6, 525--532.
[5]
A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz. 2012. Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187--189.
[6]
A. Chakrabarti and S. Sur-Kolay. 2007. Rules for synthesizing quantum Boolean circuits using minimized nearest-neighbor templates. In Proceedings of the International Advanced Computer Communication Conference, 183--189.
[7]
E. P. Debenedictis. 2005. Reversible logic for supercomputing. In Proceedings of the ACM Conference on Computing Frontiers, ACM, New York, 391--402.
[8]
J. Donald and N. K. Jha. 2008. Reversible logic synthesis with Fredkin and Peres gates. J. Emerging Technol. Comput. Syst. 4, 2:1--2:19.
[9]
R. Drechsler and B. Becker. 1995. Dynamic minimization of OKFDDs. In Proceedings of the International Conference on Computer Design, 602--607.
[10]
R. Drechsler, M. Theobald, and B. Becker. 1996. Fast OFDD-based minimization of fixed polarity Reed-Muller expressions. IEEE Trans. Comput. 45, 11, 1294--1299.
[11]
R. Drechsler and R. Wille. 2011. From truth tables to programming languages: Progress in the design of reversible circuits. In Proceedings of the IEEE International Symposium on Multiple-Valued Logic, IEEE, Washington, D.C., 78--85.
[12]
E. Fredkin and T. Toffoli. 1982. Conservative logic. Int. J. Theor. Phys. 21, 3--4, 219--253.
[13]
D. Grosse, R. Wille, G. Dueck, and R. Drechsler. 2009. Exact multiple-control Toffoli network synthesis with SAT techniques. IEEE Trans. Comput.-Aided Des. 28, 5, 703--715.
[14]
P. Gupta, A. Agrawal, and N. K. Jha. 2006. An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. 25, 11, 2317--2330.
[15]
Y. Hirata, M. Nakanishi, S. Yamashita, and Y. Nakashima. 2009. An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In Proceedings of the International Quantum, Nano and Micro Technology, 26--33.
[16]
R. Landauer. 1961. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 3, 183--191.
[17]
D. Maslov. 2011. Reversible logic synthesis benchmarks page. http://webhome.cs.uvic.ca/∼dmaslov/.
[18]
D. Maslov and G. Dueck. 2004. Reversible cascades with minimal garbage. IEEE Trans. Computer-Aided Des. 23, 11, 1497--1509.
[19]
D. Maslov, G. Dueck, and D. Miller. 2005a. Toffoli network synthesis with templates. IEEE Trans. Comput. -Aided Des. 24, 6, 807--817.
[20]
D. Maslov, G. Dueck, D. Miller, and C. Negrevergne. 2008. Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Des. 27, 3, 436--444.
[21]
D. Maslov, D. Miller, and G. Dueck. 2007. Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12.
[22]
D. Maslov, C. Young, D. Miller, and G. Dueck. 2005b. Quantum circuit simplification using templates. In Proceedings of the Design, Automation and Test in Europe Conference, 1208--1213.
[23]
D. M. Miller, D. Maslov, and G. W. Dueck. 2003. A transformation based algorithm for reversible logic synthesis. In Proceedings of the Design Automation Conference, 318--323.
[24]
A. Mishchenko, and M. Perkowski. 2001. Fast heuristic minimization of exclusive-sums-of-products. In Proceedings of the International Workshop on Appl. Reed-Muller Expansion Circuit Design, 242--250.
[25]
M. Morrison, M. Lewandowski, R. Meana, and N. Ranganathan. 2011. Design of static and dynamic RAM arrays using a novel reversible logic gate and decoder. In Proceedings of the IEEE Conference on Nanotechnology, 417--420.
[26]
M. Morrison, and N. Ranganathan. 2011. Design of a Moore finite state machine using a novel reversible logic gate, decoder and synchronous up-counter. In Proceedings of the IEEE Conference on Nanotechnology, 1445--1449.
[27]
M. Nielsen and I. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
[28]
Y. Pang, J. Lin, S. Sultana, and K Radecka. 2011a. A novel method of synthesizing reversible logic. In Proceedings of the IEEE International Symposium on Circuits Systems, 2857--2860.
[29]
Y. Pang, S. Wang, Z. He, J. Lin, S. Sultana, and K. Radecka. 2011b. Positive Davio-based synthesis algorithm for reversible logic. In Proceedings of the IEEE International Conference on Computer Design, 212--218.
[30]
A. Peres. 1985. Reversible logic and quantum computers. Phys. Rev. A 32, 3266--3276.
[31]
R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120--126.
[32]
M. Saeedi, M. Arabzadeh, M. S. Zamani, and M. Sedighi. 2011a. Block-based quantum-logic synthesis. Quantum Inf. Process. 11, 262--277.
[33]
M. Saeedi and I. L. Markov. 2011. Synthesis and optimization of reversible circuits—A survey. To appear in ACM Comuting Surveys. http://arxiv.org/abs/1110.2574v1.
[34]
M. Saeedi, R. Wille, and R. Drechsler. 2011b. Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10, 3, 355--377.
[35]
M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian. 2010. Reversible circuit synthesis using a cycle-based approach. J. Emerging Technol. Comput. Syst. 6, 13:1--13:26.
[36]
Z. Sasanian, R. Wille, and D. M. Miller. 2012. Realizing reversible circuits using a new class of quantum gates. In Proceedings of the Design Automation Conference, 36--41.
[37]
V. Shende, A. Prasad, I. Markov, and J. Hayes. 2003. Synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. 22, 6, 710--722.
[38]
Z. Shi And R. B. Lee. 2000. Bit permutation instructions for accelerating software cryptography. In Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors, 138--148.
[39]
P. W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computer 26, 1484--1509.
[40]
M. Soeken, S. Frehse, R. Wille, and R. Drechsler. 2010a. RevKit: A toolkit for reversible circuit design. In Proceedings of the Workshop on Reversible Computing. http://www.informatik.uni-bremen.de/revkit/.
[41]
M. Soeken, R. Wille, and R. Drechsler. 2010b. Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition. In Proceedings of the International Design & Test Workshop, 143--148.
[42]
F. Somenzi. 2009. CUDD: CU decision diagram package release 2.4.2. University of Colorado at Boulder.
[43]
H. Thapliyal and N. Ranganathan. 2012. Design of efficient reversible logic based binary and BCD adder circuits. J. Emerging Technol. Comput. Syst.
[44]
T. Toffoli. 1980. Reversible computing. In Proceedings of the International Coloq. on Automata Languages and Programming, 632--644.
[45]
D. Vasudevan, M. Schellekens, N. Zeinolabedini, and E. Popovici. 2011. Prototyping a bidirectional processor design based on reversible principles. In Proceedings of the International Symposium on Integr. Circ. 325--328.
[46]
R. Wille and R. Drechsler. 2009. BDD-based synthesis of reversible logic for large functions. In Proceedings of the Design Automation Conference, 270--275.
[47]
R. Wille, D. Grosse, L. Teuber, G. Dueck, and R. Drechsler. 2008. RevLib: An online resource for reversible functions and reversible circuits. In Proceedings of the International Symposium on Multi-Valued Logic, 220--225. http://www.revlib.org.
[48]
R. Wille, S. Offermann, and R. Drechsler. 2010. SyReC: A programming language for synthesis of reversible circuits. In Proceedings of the Forum Specification Design Languages. 1--6.
[49]
R. Wille, M. Soeken, D. Grosse, E. Schonborn, and R. Drechsler. 2011. Designing a RISC CPU in reversible logic. In Proceedings of the IEEE International Symposium on Multiple-Valued Logic. 170--175.

Cited By

View all
  • (2024)A New Multicommodity Network Flow Model and Branch and Cut for Optimal Quantum Boolean Circuit SynthesisINFORMS Journal on Computing10.1287/ijoc.2024.0562Online publication date: 14-Nov-2024
  • (2022)Heuristic Reordering Strategy for Quantum Circuit Mapping on LNN ArchitecturesComputational Intelligence and Neuroscience10.1155/2022/17659552022Online publication date: 1-Jan-2022
  • (2022)Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision DiagramsThe Computer Journal10.1093/comjnl/bxac10766:10(2574-2592)Online publication date: 1-Aug-2022
  • Show More Cited By

Index Terms

  1. RMDDS: Reed-muller decision diagram synthesis of reversible logic circuits

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 10, Issue 2
    February 2014
    143 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/2590828
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 06 March 2014
    Accepted: 01 September 2012
    Revised: 01 September 2012
    Received: 01 May 2012
    Published in JETC Volume 10, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Decision diagram
    2. quantum computing
    3. reversible logic

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Taiwan Ministry of Education Fellowship
    • IARPA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)A New Multicommodity Network Flow Model and Branch and Cut for Optimal Quantum Boolean Circuit SynthesisINFORMS Journal on Computing10.1287/ijoc.2024.0562Online publication date: 14-Nov-2024
    • (2022)Heuristic Reordering Strategy for Quantum Circuit Mapping on LNN ArchitecturesComputational Intelligence and Neuroscience10.1155/2022/17659552022Online publication date: 1-Jan-2022
    • (2022)Reversible Circuit Synthesis Method Using Sub-graphs of Shared Functional Decision DiagramsThe Computer Journal10.1093/comjnl/bxac10766:10(2574-2592)Online publication date: 1-Aug-2022
    • (2022)Synthesis of Reversible Circuits with Reduced Nearest-Neighbor Cost Using Kronecker Functional Decision DiagramsJournal of Electronic Testing10.1007/s10836-022-05987-z38:1(39-62)Online publication date: 25-Mar-2022
    • (2019)Reversible Circuits Synthesis from Functional Decision Diagrams by using Node Dependency MatricesJournal of Circuits, Systems and Computers10.1142/S0218126620500796(2050079)Online publication date: 10-Jun-2019
    • (2019)An improved KFDD based reversible circuit synthesis methodIntegration10.1016/j.vlsi.2019.04.008Online publication date: May-2019
    • (2018)Synthesis of Reversible Circuits Using Conventional Hardware Description Languages2018 IEEE 48th International Symposium on Multiple-Valued Logic (ISMVL)10.1109/ISMVL.2018.00025(97-102)Online publication date: May-2018
    • (2017)Application of the maximum weighted matching to quantum cost reduction in reversible circuits2017 MIXDES - 24th International Conference "Mixed Design of Integrated Circuits and Systems10.23919/MIXDES.2017.8005188(224-228)Online publication date: Jun-2017
    • (2017)Extensions to the Reversible Hardware Description Language SyReC2017 IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL)10.1109/ISMVL.2017.41(185-190)Online publication date: May-2017
    • (2017)Verified Compilation of Space-Efficient Reversible CircuitsComputer Aided Verification10.1007/978-3-319-63390-9_1(3-21)Online publication date: 13-Jul-2017
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media