skip to main content
10.1145/2566486.2568007acmotherconferencesArticle/Chapter ViewAbstractPublication PageswwwConference Proceedingsconference-collections
research-article

Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling

Authors Info & Claims
Published:07 April 2014Publication History

ABSTRACT

We propose two dynamic indexing schemes for shortest-path and distance queries on large time-evolving graphs, which are useful in a wide range of important applications such as real-time network-aware search and network evolution analysis. To the best of our knowledge, these methods are the first practical exact indexing methods to efficiently process distance queries and dynamic graph updates. We first propose a dynamic indexing scheme for queries on the last snapshot. The scalability and efficiency of its offline indexing algorithm and query algorithm are competitive even with previous static methods. Meanwhile, the method is dynamic, that is, it can incrementally update indices as the graph changes over time. Then, we further design another dynamic indexing scheme that can also answer two kinds of historical queries with regard to not only the latest snapshot but also previous snapshots.

Through extensive experiments on real and synthetic evolving networks, we show the scalability and efficiency of our methods. Specifically, they can construct indices from large graphs with millions of vertices, answer queries in microseconds, and update indices in milliseconds.

References

  1. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub labelings for shortest paths. In ESA, pages 24--35. 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. F. Aidouni, M. Latapy, and C. Magnien. Ten weeks in the life of an edonkey server. In IPDPS, pages 1--5, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata. Fast shortest-path distance queries on road networks by pruned highway labeling. In ALENEX, pages 147--154, 2014.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In SIGMOD, pages 349--360, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-path queries for complex networks: exploiting low tree-width outside the core. In EDBT, pages 144--155, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership, growth, and evolution. In KDD, pages 44--54, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature, 435:207--211, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  8. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509--512, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang. Complex networks: Structure and dynamics. Physics reports, 424(4-5):175--308, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  10. D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85:5468--5471, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  11. J. Cheng and J. X. Yu. On-line exact shortest distance query processing. In EDBT, pages 481--492, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via 2-hop labels. In SODA, pages 937--946, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy. A sketch-based distance oracle for web-scale graphs. In WSDM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Structure of growing networks with preferential linking. Phys. Rev. Lett., 85:4633--4636, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. W.-C. Fu, H. Wu, J. Cheng, S. Chu, and R. C.-W. Wong. Is-label: an independent-set based labeling scheme for point-to-point distance querying on large graphs. PVLDB, 6(6):457--468, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. R. Jin, N. Ruan, Y. Xiang, and V. Lee. A highway-centric labeling approach for answering distance queries on large sparse graphs. In SIGMOD, pages 445--456, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD, pages 137--146, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification research. In ECML, volume 3201 of LNCS, pages 217--226. 2004.Google ScholarGoogle Scholar
  19. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. TKDD, 1(1), 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P. Massa and P. Avesani. Controversial users demand local trust metrics: an experimental study on epinions.com community. In AAAI, pages 121--126, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Mislove. Online Social Networks: Measurement, Analysis, and Applications to Distributed Information Systems. PhD thesis, Rice University, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64(2):026118 1--17, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. Pastor-Satorras and A. Vespignani. Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path distance estimation in large networks. In CIKM, pages 867--876, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest distance computing: A query-dependent local landmark scheme. In ICDE, pages 462--473, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. Metabolic pathway analysis web service (pathway hunter tool at cubic). Bioinformatics, 21(7):1189--1193, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. A. Rahman and D. Schomburg. Observing local and global properties of metabolic pathways: 'load points' and 'choke points' in the metabolic networks. Bioinformatics, 22(14):1767--1774, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B, 36(1):49--64, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  29. L. Tang and M. Crovella. Virtual landmarks for the internet. In SIGCOMM, pages 143--152, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. K. Tretyakov, A. Armas-Cervantes, L. García-Bañuelos, J. Vilo, and M. Dumas. Fast fully dynamic landmark-based estimation of shortest path distances in very large graphs. In CIKM, pages 1785--1794, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. A. Ukkonen, C. Castillo, D. Donato, and A. Gionis. Searching the wikipedia with contextual information. In CIKM, pages 1351--1352, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. d. C. Reis, and B. Ribeiro-Neto. Efficient search ranking in social networks. In CIKM, pages 563--572, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in facebook. In WOSN, pages 37--42, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. F. Wei. Tedi: efficient shortest path query answering on graphs. In SIGMOD, pages 99--110, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. S. A. Yahia, M. Benedikt, L. V. S. Lakshmanan, and J. Stoyanovich. Efficient network aware search in collaborative tagging sites. PVLDB, 1(1):710--721, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Y. Yano, T. Akiba, Y. Iwata, and Y. Yoshida. Fast and scalable reachability queries on graphs by pruned labeling with landmarks and paths. In CIKM, pages 1601--1606, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WWW '14: Proceedings of the 23rd international conference on World wide web
      April 2014
      926 pages
      ISBN:9781450327442
      DOI:10.1145/2566486

      Copyright © 2014 Copyright is held by the International World Wide Web Conference Committee (IW3C2).

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      WWW '14 Paper Acceptance Rate84of645submissions,13%Overall Acceptance Rate1,899of8,196submissions,23%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader