skip to main content
research-article

Towards a scalable, low-power all-optical architecture for networks-on-chip

Published: 28 March 2014 Publication History

Abstract

This article proposes a scalable wavelength-routed optical Network on Chip (NoC) based on the Spidergon topology, named Power-efficient Scalable Wavelength-routed Network-on-chip (PeSWaN). The key idea of the proposed all-optical architecture is the utilization of per-receiver wavelengths in the data network to prevent network contention and the adoption of per-sender wavelengths in the control network to avoid end-point contention. By performing a series of simulations, we study the efficiency of the proposed architecture, its power and energy consumption, and the data transmission delay. Moreover, we compare the proposed architecture with electrical NoCs and alternative ONoC architectures under various traffic patterns.

References

[1]
L. Bononi and N. Concer. 2006. Simulation and analysis of network on chip architectures: ring, spidergon and 2D mesh. In Proceedings of the Conference on Design, Automation and Test in Europe. 154--159.
[2]
M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot, and I. O'Connor. 2007. System level assessment of an optical NoC in an MPSoC platform. In Proceedings of the Conference on Design, Automation and Test in Europe. 1084--1089.
[3]
G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman. 2007. Predictions of CMOS compatible on-chip optical interconnect. Integrat. VLSI J. 40, 4, 434--446.
[4]
M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi. 2009. Phastlane: a rapid transit optical routing network. ACM SIGARCH Computer Architec. News 37, 3, 441--450.
[5]
M. Coppola, R. Locatelli, G. Maruccia, L. Pieralisi, and M. D. Grammatikakis. 2005. Spidergon: A NoC modeling paradigm. In Model Driven Engineering for Distributed Real-time Embedded Systems.
[6]
D. P. Darcy and C. F. Kemerer. 2009. The International Technology Roadmap for Semiconductors. http://public.itrs.net.
[7]
J. Gray. 2003. What next? A dozen information-technology research goals. J. ACM 50, 1, 41--57.
[8]
H. Gu, J. Xu, and W. Zhang. 2009a. A low-power fat tree-based optical network-on-chip for multiprocessor system-on-chip. In Proceedings of the Conference on Design, Automation and Test in Europe. 3--8
[9]
H. Gu, J. Xu, and Z. Wang. 2009b. A novel optical mesh network-on-chip for gigascale systems-on-chip. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems. 1728--1731.
[10]
H. Gu, K. H. Mo, J. Xu, W. Zhang. 2009. A low-power low-cost optical router for optical networks-on-chip in multiprocessor systems-on-chip. In Proceedings of the Annual Symposium on VLSI. 19--24.
[11]
C. Guillemot, M. Renaud, P. Gambini, et al. 1998. Transparent optical packet switching: The European ACTS KEOPS project approach. J Lightwave Technol. 16, 12, 2117--2134.
[12]
M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet. 2007. On-chip optical interconnect roadmap: Challenges and critical directions. IEEE J. Sel. Top. Quantum Electron. 12, 6, 1699--1705.
[13]
J. Held, J. Bautista, and S. Koehl. 2006. From a few cores to many: A tera-scale computing research overview. Intel white paper.
[14]
R. Ho. 2006. Wire scaling and trends. MTO DARPA Meeting, Sun Microsystems Laboratories.
[15]
I. Hsieh. 2006. Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wirewaveguides. Opt. Express 14, 25, 12380--12387.
[16]
A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovi. 2009. Siliconphotonic clos networks for global on-chip communication. In Proceedings of the IEEE/ACM International. Symposium on Networks-on-Chip. 124--133.
[17]
N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A. Watkins, and D. H. Albonesi. 2006. Leveraging optical technology in future bus-based chip multiprocessors. In Proceedings of the IEEE/ACM Annual International Symposium on Microarchitecture. IEEE, 492--503.
[18]
N. Kirman and J. F. Martinez. 2010. A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing. In Proceedings of the International. Conference on Architectural Support for Programming Languages and Operating Systems.
[19]
B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers. 2007. Mode-locked silicon evanescent lasers. Opt. Express 15, 18, 11225--11233.
[20]
S. Koohi, M. Mirza-Aghatabar, and S. Hessabi. 2007. Evaluation of traffic pattern effect on power consumption in mesh and torus-based Network-on-Chips. In Proceedings of the International Symposium on Integrated Circuits.
[21]
S. Koohi and S. Hessabi. 2009. Contention-free on-chip routing of optical packets. In Proceedings of the IEEE International Symposium on Networks-on-Chip. 134--143.
[22]
P. Koonath, T. Indukuri, B. Jalali. 2009. Add-drop filters utilizing vertically coupled microdisk resonatorsin silicon. Appl. Phys. Lett. 86, 9, 091102--091102.
[23]
B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman. 2008. All-optical comb switch for multiwavelength message routing in silicon photonic networks. IEEE Photonics Technol. Lett. 20, 10, 767--769.
[24]
M. Lipson. 2005. Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol. 23, 12, 4222.
[25]
M. Malumbres and J. Duato. 2000. An efficient implementation of tree-based multicast routing for distributed shared-memory multiprocessors. J. Syst. Archit. 46, 11, 1019--1032.
[26]
S. Manipatruni, Q. Xu, and M. Lipson. 2007. PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator. Opt. Express 15, 20, 13035--13042.
[27]
I. O'Connor and F. Gaffiot. 2004. On-chip optical interconnect for low-power. Ultra Low-Power Electron. Des. 21--39.
[28]
Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary. 2009. Firefly: Illuminating future network-on-chip with nanophotonics. In Proceedings of the ACM International Symposium on Computer Architecture. 429--440.
[29]
K. Saraswat and F. Mohammadi. 1982. Effect of scaling of interconnections on the time delay of VLSI circuits. IEEE J. Solid-State Circuits 17, 2, 275--280.
[30]
A. Shacham, K. Bergman, and L. P. Carloni. 2007. On the design of a photonic network-on-chip. In Proceedings of the IEEE International Symposium on Networks-on-Chip. 53--64.
[31]
A. Shacham, K. Bergman, and L. P. Carloni. 2008. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. 57, 9, 1246--1260.
[32]
N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson. 2008. Optical 4×4 hitless slicon router for optical networks-on-chip (NoC). Opt Express 16, 20, 15915--15922.
[33]
B. A. Small, B. G. Lee, K. Bergman, Q. Xu, and M. Lipson. 2007. Multiple-wavelength integrated photonic networks based on microring resonator devices. J. Opt. Netw. 6, 2, 112--120.
[34]
D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn. 2008. Corona: System implications of emerging nanophotonic technology. In Proceedings of the IEEE/ACM International Symposium on Computer Architecture. 153--164.
[35]
D. M. Vantrease. 2010. Optical tokens in many-core processors. Ph.D. dissertation, University of Wisconsin.
[36]
A. Varga. 2001. The OMNeT++ Discrete Event Simulation System. 319--324.
[37]
S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The SPLASH-2 programs: Characterization and methodological considerations. In Proceedings of the ACM International Symposium on Computer Architecture. 24--36.
[38]
H. Xu, P. K. McKinley, and L. M. Ni. 1992. Efficient implementation of barrier synchronization in wormhole-routed hypercube multicomputers. J. Parallel Distrib. Comput. 16, 2, 172--184.
[39]
L. Zhou, S. S. Djordjevic, R. Proietti, D. Ding, S. J. B. Yoo, R. Amirtharajah, and V. Akella. 2009. Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks. Appl. Phys A 95, 4, 1111--1118.

Cited By

View all

Index Terms

  1. Towards a scalable, low-power all-optical architecture for networks-on-chip

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Embedded Computing Systems
    ACM Transactions on Embedded Computing Systems  Volume 13, Issue 3s
    Special Issue on Design Challenges for Many-Core Processors, Special Section on ESTIMedia'13 and Regular Papers
    March 2014
    403 pages
    ISSN:1539-9087
    EISSN:1558-3465
    DOI:10.1145/2597868
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 28 March 2014
    Accepted: 01 July 2013
    Revised: 01 May 2013
    Received: 01 November 2012
    Published in TECS Volume 13, Issue 3s

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Network-on-Chip
    2. Optics
    3. Power consumption
    4. Scalability
    5. Wavelength Routing

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)THAMONJournal of Systems Architecture: the EUROMICRO Journal10.1016/j.sysarc.2021.102315121:COnline publication date: 9-Apr-2022
    • (2020)Reliability and Security Challenges in Electrical/Optical On-Chip Interconnects for IoT ApplicationsIoT Architectures, Models, and Platforms for Smart City Applications10.4018/978-1-7998-1253-1.ch011(218-246)Online publication date: 2020
    • (2019)A thermally-resilient all-optical network-on-chipMicroelectronics Reliability10.1016/j.microrel.2019.05.01799(74-86)Online publication date: Aug-2019
    • (2018)Analysis of Hair Shine Using Rendering and Subjective EvaluationACM Transactions on Applied Perception10.1145/327447815:4(1-17)Online publication date: 1-Oct-2018
    • (2018)Comparison of Unobtrusive Visual Guidance Methods in an Immersive Dome EnvironmentACM Transactions on Applied Perception10.1145/323830315:4(1-11)Online publication date: 19-Sep-2018
    • (2018)Perceptual Adjustment of Eyeball Rotation and Pupil Size Jitter for Virtual CharactersACM Transactions on Applied Perception10.1145/323830215:4(1-13)Online publication date: 18-Oct-2018
    • (2018)Foveated Depth-of-Field Filtering in Head-Mounted DisplaysACM Transactions on Applied Perception10.1145/323830115:4(1-14)Online publication date: 19-Sep-2018
    • (2018)Review of Photonic and Hybrid On Chip Interconnects for MPSoCs in IoT Paradigm2018 21st Saudi Computer Society National Computer Conference (NCC)10.1109/NCG.2018.8593055(1-6)Online publication date: Apr-2018
    • (2017)A Review, Classification, and Comparative Evaluation of Approximate Arithmetic CircuitsACM Journal on Emerging Technologies in Computing Systems10.1145/309412413:4(1-34)Online publication date: 11-Aug-2017
    • (2017)Coupled Spin-Torque Nano-Oscillator-Based ComputationACM Journal on Emerging Technologies in Computing Systems10.1145/306483513:4(1-24)Online publication date: 11-Jul-2017
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media