skip to main content
10.1145/2576768.2598332acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Hypervolume-based local search in multi-objective evolutionary optimization

Authors Info & Claims
Published:12 July 2014Publication History

ABSTRACT

This paper describes a surrogate based multi-objective evolutionary algorithm with hyper-volume contribution-based local search. The algorithm switches between an NSGA-II phase and a local search phase. In the local search phase, a model for each of the objectives is trained and CMA-ES is used to optimize the hyper-volume contribution of each individual with respect to its two neighbors on the non-dominated front. The performance of the algorithm is evaluated using the well known ZDT and WFG benchmark suites.

Skip Supplemental Material Section

Supplemental Material

References

  1. A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, FOGA '09, pages 87--102, New York, NY, USA, 2009. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. Deb and R. B. Agrawal. Simulated binary crossover for continuous search space. Complex Systems, 9:1--34, 1994.Google ScholarGoogle Scholar
  3. K. Deb and M. Goyal. A combined genetic adaptive search (geneas) for engineering design. Computer Science and Informatics, 26(4):30--45, 1996.Google ScholarGoogle Scholar
  4. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on, 6(2):182--197, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support vector regression machines. In M. Mozer, M. I. Jordan, and T. Petsche, editors, NIPS, pages 155--161. MIT Press, 1996.Google ScholarGoogle Scholar
  6. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evol. Comput., 9(2):159--195, June 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. S. Huband, P. Hingston, L. Barone, and L. While. A review of multiobjective test problems and a scalable test problem toolkit. Evolutionary Computation, IEEE Transactions on, 10(5):477--506, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. T. Joachims. A support vector method for multivariate performance measures. In Proceedings of the 22nd international conference on Machine learning, ICML '05, pages 377--384, New York, NY, USA, 2005. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions. J. of Global Optimization, 13(4):455--492, Dec. 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff. Generalizing surrogate-assisted evolutionary computation. Trans. Evol. Comp, 14(3):329--355, June 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. I. Loshchilov, M. Schoenauer, and M. Sebag. Dominance-based pareto-surrogate for multi-objective optimization. In K. Deb, A. Bhattacharya, N. Chakraborti, P. Chakroborty, S. Das, J. Dutta, S. K. Gupta, A. Jain, V. Aggarwal, J. Branke, S. J. Louis, and K. C. Tan, editors, SEAL, volume 6457 of Lecture Notes in Computer Science, pages 230--239. Springer, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. I. Loshchilov, M. Schoenauer, and M. Sebag. A mono surrogate for multiobjective optimization. In M. Pelikan and J. Branke, editors, GECCO, pages 471--478. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. P. K. Nain and K. Deb. A multi-objective optimization procedure with successive approximate models. KanGAL report, (2005002), 2005.Google ScholarGoogle Scholar
  14. M. Pilát and R. Neruda. Aggregate meta-models for evolutionary multiobjective and many-objective optimization. Neurocomputing, 116:392--402, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Pilát and R. Neruda. The effect of different local search algorithms on the performance of multi-objective optimizers. In IEEE Congress on Evolutionary Computation 2014, 2014. accepted.Google ScholarGoogle ScholarCross RefCross Ref
  16. W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze. Multiobjective optimization on a limited budget of evaluations using model-assisted S-metric selection. In Proceedings of the 10th International Conference on Parallel Problem Solving from Nature: PPSN X, pages 784--794, Berlin, Heidelberg, 2008. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. I. Voutchkov and A. Keane. Multiobjective optimization using surrogates. In Proceedings of the 7th International Conference on Adaptive Computing in Design and Manufacture, pages 167--175. The M.C.Escher Company, April 2006.Google ScholarGoogle Scholar
  18. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput., 8(2):173--195, June 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Hypervolume-based local search in multi-objective evolutionary optimization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation
        July 2014
        1478 pages
        ISBN:9781450326629
        DOI:10.1145/2576768

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 12 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        GECCO '14 Paper Acceptance Rate180of544submissions,33%Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader