skip to main content
research-article

Asymptotic series of generalized Lambert W function

Published: 28 January 2014 Publication History

Abstract

Herein, we present a sequel to earlier work on a generalization of the Lambert W function. In particular, we examine series expansions of the generalized version providing computational means for evaluating this function in various regimes and further confirming the notion that this generalization is a natural nextension of the standard Lambert W function.

References

[1]
R. B. Mann and T. Ohta, Exact solution for the metric and the motion of two bodies in (1 + 1)- dimensional gravity, Phys. Rev. D. 55, (1997), 4723--4747.
[2]
P. S. Farrugia, R. B. Mann, and T. C. Scott, N-body Gravity and the Schrödinger Equation, Class. Quantum Grav. 24, (2007), 4647--4659.
[3]
T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan III, The Calculation of Exchange Forces: General Results and Specific Models, J. Chem. Phys. 99, (1993), 2841--2854.
[4]
A. A. Frost, Delta-Function Model. I. Electronic Energies of Hydrogen-Like Atoms and Diatomic Molecules, J. Chem. Phys. 25, (1956), 1150--1154.
[5]
P. R. Certain and W. Byers Brown, Branch Point Singularities in the Energy of the Delta-Function Model of One-Electron Diatoms, Intern. J. Quantum Chem. 6, (1972), 131--142.
[6]
W. N. Whitton and W. Byers Brown, The Relationship Between the Rayleigh-Schrödinger and Asymptotic Perturbation Theories of Intermolecular Forces, Int. J. Quantum Chem. 10, (1976), 71--86.
[7]
T. C. Scott, A. Dalgarno, and J. D. Morgan III, Exchange Energy of H+2 Calculated from Polarization Perturbation Theory and the Holstein-Herring Method, Phys. Rev. Lett. 67, pp. 1419--1422 (1991).
[8]
T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan III, Resolution of a Paradox in the Calculation of Exchange Forces for H+2, Chem. Phys. Lett. 203, pp. 175--183 (1993).
[9]
T. C. Scott, M. Aubert-Frécon and J. Grotendorst, New approach for the electronic energies of the hydrogen molecular ion, Chem. Phys. 324, (2006), 323--338.
[10]
T. C. Scott, R. B. Mann and R. E. Martinez II, General Relativity and Quantum Mechanics: Towards a Generalization of the Lambert W Function, AAECC, 17, (2006) 41--47.
[11]
R. Corless, G. Gonnet, D. E. G. Hare and D. Jeffrey, Lambert's W Function in Maple, MapleTech 9, ed. T. C. Scott, (Spring 1993); (b) R. Corless, G. Gonnet, D. E. G. Hare, D. Jeffrey and D. Knuth, On the Lambert W Function, Advances in Computational Mathematics, 5, (1996), 329--359.
[12]
A. C. Dixon, On Burmann's Theorem, Proc. London Math. Soc. 34, pp. 151--153, (1902).
[13]
J. Grotendorst, A Maple Package for Transforming Series, Sequences and Functions, Comput. Phys. Commun. 67, (1991), 325--342.
[14]
E. J. Weniger, Nonlinear Sequence Transformations for the Acceleration of Convergence and the Summation of Divergent Series, Comput. Phys. Rep. 10, (1989), 189--371.
[15]
D. Levin, Development of non-linear transformations of improving convergence of sequences, Internat. J. Comput. Math. B 3, (1973), 371--388.
[16]
D. Shanks, Nonlinear Transformations of Divergent and Slowly Convergent Sequences, J. Math. and Phys. (Cambridge, Mass.) 34, (1955), 1--42.
[17]
B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan and S. M. Watt, First Leaves: A Tutorial Introduction to Maple V, Springer-Verlag, New York, (1992).
[18]
C. Gomez and T. C. Scott, Maple programs for generating efficient FORTRAN code for serial and vectorised machines, Comput. Phys. Commun., Thematic issue: Computer Algebra in Physics Research, 115, pp. 548--562 (1998).

Cited By

View all
  • (2024)Lambert W Functions in the Analysis of Nonlinear Dynamics and Bifurcations of a 2D γ-Ricker Population ModelMathematics10.3390/math1212180512:12(1805)Online publication date: 10-Jun-2024
  • (2023)Self-Supervised Learning for Online Anomaly Detection in High-Dimensional Data StreamsElectronics10.3390/electronics1209197112:9(1971)Online publication date: 24-Apr-2023
  • (2023)The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert FunctionsACM Communications in Computer Algebra10.1145/3637529.363753057:3(85-110)Online publication date: 13-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 47, Issue 3/4
September/December 2013
116 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2576802
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 January 2014
Published in SIGSAM-CCA Volume 47, Issue 3/4

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)22
  • Downloads (Last 6 weeks)5
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Lambert W Functions in the Analysis of Nonlinear Dynamics and Bifurcations of a 2D γ-Ricker Population ModelMathematics10.3390/math1212180512:12(1805)Online publication date: 10-Jun-2024
  • (2023)Self-Supervised Learning for Online Anomaly Detection in High-Dimensional Data StreamsElectronics10.3390/electronics1209197112:9(1971)Online publication date: 24-Apr-2023
  • (2023)The Keiper-Li Criterion for the Riemann Hypothesis and Generalized Lambert FunctionsACM Communications in Computer Algebra10.1145/3637529.363753057:3(85-110)Online publication date: 13-Dec-2023
  • (2023)Bifurcation Structures of the Homographic γ-Ricker Maps and Their Cusp Points OrganizationInternational Journal of Bifurcation and Chaos10.1142/S021812742330011233:05Online publication date: 28-Apr-2023
  • (2022)RSU-Based Online Intrusion Detection and Mitigation for VANETSensors10.3390/s2219761222:19(7612)Online publication date: 8-Oct-2022
  • (2022)Reward Once, Penalize Once: Rectifying Time Series Anomaly Detection2022 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN55064.2022.9891913(1-8)Online publication date: 18-Jul-2022
  • (2022)The electronic properties of graphene nanoribbons and the offset logarithm functionMaterials Today: Proceedings10.1016/j.matpr.2021.05.33854(7-13)Online publication date: 2022
  • (2021)Generalized r-Lambert Function in the Analysis of Fixed Points and Bifurcations of Homographic 2-Ricker MapsInternational Journal of Bifurcation and Chaos10.1142/S021812742130033031:11(2130033)Online publication date: 2-Sep-2021
  • (2021)Performance of a Cooperative Communication Network With Green Self-Sustaining NodesIEEE Transactions on Green Communications and Networking10.1109/TGCN.2020.30249995:1(426-441)Online publication date: Mar-2021
  • (2021)Performance of Two-Hop Links With an Energy Buffer-Aided IoT Source and a Data Buffer-Aided RelayIEEE Internet of Things Journal10.1109/JIOT.2020.30361308:6(5045-5061)Online publication date: 15-Mar-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media