skip to main content
column

Gelfand-Kirillov dimensions of differential difference modules via Gröbner bases

Published: 28 January 2014 Publication History

Abstract

No abstract available.

References

[1]
A. D. Bell and K. R. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math, 131(1):13--37, 1988.
[2]
P. E. Hydon. Symmetries and first integrals of ordinary difference equations. Proceedings of the Royal Society of London (series A), 456:2835--2855, 2000.
[3]
A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras of solvable type. Journal of Symbolic Computation, 9(1):1--26, 1990.
[4]
V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005.
[5]
E. L. Mansfield and A. Szanto. Elimination theory for differential difference polynomials. In Proceedings of the 2003 international symposium on symbolic and algebraic computation, pages 191--198. ACM, 2003.
[6]
Meng Zhou and Franz Winkler. Gröbner bases in difference-differential modules. In Proceedings of the 2006 international symposium on Symbolic and algebraic computation, pages 353--360. ACM, 2006.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 47, Issue 3/4
September/December 2013
116 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2576802
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 January 2014
Published in SIGSAM-CCA Volume 47, Issue 3/4

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 25
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media