skip to main content
column

NAClab: a Matlab toolbox for numerical algebraic computation

Published: 28 January 2014 Publication History
First page of PDF

References

[1]
D.J. Bates, C. Peterson and A.J. Sommese, A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set, IEEE Trans. Signal Processing, 52 (2003), pp. 3394--3402.
[2]
D.J. Bates, J.D. Hauenstein, A.J. Sommese and C.W. Wampler II, Software for numerical algebraic geometry: A paradigm and progress towards its implementation, in Software for Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 1--14.
[3]
R. M. Corless, S. M. Watt, and L. Zhi, QR factoring to compute the GCD of univariate approximate polynomials, IEEE Trans. Signal Processing, 52 (2003), pp. 3394--3402.
[4]
B. Dayton, T.Y. Li and Z. Zeng, Multiple zeros of nonlinear systems Mathematics of Computation, Vol. 80, pp. 2143--2168, 2011
[5]
S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi, Approximate factorization of multivariate polynomials via differential equations. Proc. ISSAC '04, ACM Press, pp 167--174, 2004.
[6]
C.-P. Jeannerod and G. Labahn, The SNAP package for arithemetic with numeric polynomials. In International Congress of Mathematical Software, World Scientific, pages 61--71, 2002.
[7]
E. Kaltofen, Challenges of symbolic computation: My favorite open problems, J. Symb. Comput., 29, pp.161--168, 2000.
[8]
A.J. Sommese and C.W. Wampler II, The Numerical Solution of Systems of Polynomials, World Scientific Pub., Hackensack, NJ. 2005
[9]
H. J. Stetter, Numerical Polynomial Algebra, SIAM, 2004.
[10]
J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. on Math. Software, 25(1999), pp. 251--276.
[11]
Z. Zeng, A polynomial elimination method for symbolic and numerical computation. 409(2008) pp. 318--331.
[12]
Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comp., 74 (2005), pp. 869--903.
[13]
Z. Zeng, ApaTools: A Maple and Matlab toolbox for approximate polynomial algebra, in Software for Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 149--167.
[14]
Z. Zeng and B. Dayton, The approximate GCD of inexact polynomials. II: A multivariate algorithm. Proceedings of ISSAC'04, ACM Press, pp 320--327. (2006).

Cited By

View all
  • (2024)Spectrum Situation Awareness for Space–Air–Ground Integrated Networks Based on Tensor ComputingSensors10.3390/s2402033424:2(334)Online publication date: 5-Jan-2024
  • (2023)Signal Tensor Model and Eigenvalue Distributions for THz Uplink UM-MIMO Communications2023 International Conference on Wireless Communications and Signal Processing (WCSP)10.1109/WCSP58612.2023.10405305(1050-1055)Online publication date: 2-Nov-2023
  • (2023)Fast verified computation for real powers of large matrices with Kronecker structureApplied Mathematics and Computation10.1016/j.amc.2023.128055453(128055)Online publication date: Sep-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 47, Issue 3/4
September/December 2013
116 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2576802
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 January 2014
Published in SIGSAM-CCA Volume 47, Issue 3/4

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)14
  • Downloads (Last 6 weeks)3
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Spectrum Situation Awareness for Space–Air–Ground Integrated Networks Based on Tensor ComputingSensors10.3390/s2402033424:2(334)Online publication date: 5-Jan-2024
  • (2023)Signal Tensor Model and Eigenvalue Distributions for THz Uplink UM-MIMO Communications2023 International Conference on Wireless Communications and Signal Processing (WCSP)10.1109/WCSP58612.2023.10405305(1050-1055)Online publication date: 2-Nov-2023
  • (2023)Fast verified computation for real powers of large matrices with Kronecker structureApplied Mathematics and Computation10.1016/j.amc.2023.128055453(128055)Online publication date: Sep-2023
  • (2022)Investigation on multiple periodic solution branches of a system with piecewise linear nonlinear energy sinkProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science10.1177/09544062211067774236:12(6451-6462)Online publication date: 1-Apr-2022
  • (2022)Verified Error Bounds for All Eigenvalues and Eigenvectors of a MatrixSIAM Journal on Matrix Analysis and Applications10.1137/21M145144043:4(1736-1754)Online publication date: 23-Nov-2022
  • (2022)The numerical Jordan formLinear Algebra and its Applications10.1016/j.laa.2021.12.014638(1-45)Online publication date: Apr-2022
  • (2021)Phase De-Embedding of Microwave Filter with use of Cauchy Method and Extraction of Polynomial Greatest Common Divisor2020 50th European Microwave Conference (EuMC)10.23919/EuMC48046.2021.9338145(132-135)Online publication date: 12-Jan-2021
  • (2021)Verified computation of real powers of matricesJournal of Computational and Applied Mathematics10.1016/j.cam.2021.113431(113431)Online publication date: Jan-2021
  • (2021)Continuation Newton methods with the residual trust-region time-stepping scheme for nonlinear equationsNumerical Algorithms10.1007/s11075-021-01112-xOnline publication date: 30-Apr-2021
  • (2021)Computing Enclosures for the Matrix Mittag–Leffler FunctionJournal of Scientific Computing10.1007/s10915-021-01447-687:2Online publication date: 13-Apr-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media