skip to main content
column

Classifying discrete objects with orbiter

Published: 28 January 2014 Publication History

Abstract

Orbiter is a software package to classify discrete objects such as designs, graphs, codes, and objects from finite geometry. It employs the method of breaking the symmetry to attack difficult problem instances by means of subobjects that serve as a stepping stone. The algorithms combine techniques from Group Theory and from Combinatorics. Orbiter is a library of C++ functions that provide functionality for Discrete Mathematics. In order to be applied to a specific problem, code has to be written taylored to the specific application.

References

[1]
John Bamberg, Anton Betten, Cheryl Praeger, and Alfred Wassermann. Unitals in the Desarguesian Projective Plane of Order Sixteen. To appear in Journal of Statistical Planning and Inference.
[2]
Anton Betten. The Packings of PG(3, 3). Submitted to Journal of Combinatorial Designs.
[3]
Anton Betten. Rainbow Cliques and the Classification of Small BLT-Sets. Accepted for the Proceedings of ISSAC 2013.
[4]
Anton Betten, Reinhard Laue, and Alfred Wassermann. DISCRETA, a tool for constructing t-designs. In: Computer Algebra Handbook, Edited by Johannes Grabmeier, Erich Kaltofen, VolkerWeispfennig, Springer 2003, pp 372--375.
[5]
Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack searching in the presence of symmetry. In Applied algebra, algebraic algorithms and error-correcting codes (Rome, 1988), volume 357 of Lecture Notes in Comput. Sci., pages 99--110. Springer, Berlin, 1989.
[6]
Cynthia A. Brown, Larry Finkelstein, and Paul Walton Purdom, Jr. Backtrack searching in the presence of symmetry. Nordic J. Comput., 3(3):203--219, 1996.
[7]
P. J. Cameron and J. H. van Lint. Designs, graphs, codes and their links, volume 22 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1991.
[8]
GAP -- Groups, Algorithms, and Programming, Version 4.4. The GAP Group, Aachen, Germany and St. Andrews, Scotland, 2004.
[9]
P. Kaski and P. Östergård. Classification algorithms for codes and designs, volume 15 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2006.
[10]
D. E. Knuth. Dancing links. eprint arXiv:cs/0011047, November 2000. in Davies, Jim; Roscoe, Bill; Woodcock, Jim, Millennial Perspectives in Computer Science: Proceedings of the 1999 Oxford-Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, pp. 187--214.
[11]
R. Laue. Construction of combinatorial objects---a tutorial. Bayreuth. Math. Schr., 43:53--96, 1993. Konstruktive Anwendungen von Algebra und Kombinatorik (Bayreuth, 1991).
[12]
J.S. Leon. Partitions, refinements, and permutation group computation. In Groups and computation, II (New Brunswick, NJ, 1995), volume 28 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 123--158. Amer. Math. Soc., Providence, RI, 1997.
[13]
Magma. The Computational Algebra Group within the School of Mathematics and Statistics of the University of Sydney, 2004.
[14]
Nauty User's Guide (Version 2.4), Brendan McKay, Australian National University, Nov 4, 2009.
[15]
Orbiter -- A Program To Classify Discrete Objects, http://www.math.colostate.edu/~betten/orbiter/orbiter.html, Anton Betten, 2013.
[16]
B. Schmalz. t-Designs zu vorgegebener Automorphismengruppe. Bayreuth. Math. Schr., 41:1--164, 1992. Dissertation, Universität Bayreuth, Bayreuth, 1992.
[17]
Alfred Wassermann. Finding simple t-designs with enumeration techniques. J. Combin. Des., 6(2):79--90, 1998.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 47, Issue 3/4
September/December 2013
116 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2576802
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 January 2014
Published in SIGSAM-CCA Volume 47, Issue 3/4

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)On the (29, 5)-Arcs in PG(2, 7) and Some Generalized Arcs in PG(2, q)Mathematics10.3390/math80303208:3(320)Online publication date: 2-Mar-2020
  • (2020)The Program Generation in the Software Package QextNewEditionMathematical Software – ICMS 202010.1007/978-3-030-52200-1_18(181-189)Online publication date: 13-Jul-2020
  • (2019)Cubic surfaces over small finite fieldsDesigns, Codes and Cryptography10.1007/s10623-018-0590-287:4(931-953)Online publication date: 1-Apr-2019
  • (2018)On the Symmetry Reduction of Information InequalitiesIEEE Transactions on Communications10.1109/TCOMM.2017.275747466:6(2396-2408)Online publication date: Jun-2018
  • (2018)How Fast Can We Compute Orbits of Groups?Mathematical Software – ICMS 201810.1007/978-3-319-96418-8_8(62-70)Online publication date: 14-Jul-2018
  • (2018)Classifying Cubic Surfaces over Finite Fields Using OrbiterMathematical Software – ICMS 201810.1007/978-3-319-96418-8_7(55-61)Online publication date: 14-Jul-2018

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media