skip to main content
10.1145/2588555.2610494acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Towards dependable data repairing with fixing rules

Published: 18 June 2014 Publication History
First page of PDF

References

[1]
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[2]
M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsistent databases. In PODS, 1999.
[3]
C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and Techniques. Springer, 2006.
[4]
L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and query answering with matching dependencies and matching functions. In ICDT, 2011.
[5]
G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs of functional dependency violations under hard constraints. PVLDB, 2010.
[6]
G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David. Modeling and querying possible repairs in duplicate detection. In VLDB, 2009.
[7]
P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and effective heuristic for repairing constraints by value modification. In SIGMOD, 2005.
[8]
L. Bravo, W. Fan, and S. Ma. Extending dependencies with conditions. In VLDB, 2007.
[9]
J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using tuple deletions. Inf. Comput., 2005.
[10]
X. Chu, P. Papotti, and I. Ilyas. Holistic data cleaning: Put violations into context. In ICDE, 2013.
[11]
G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality: Consistency and accuracy. In VLDB, 2007.
[12]
M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang. NADEEF: a commodity data cleaning system. In SIGMOD, 2013.
[13]
A. Ebaid, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz, N. Tang, and S. Yin. NADEEF: A generalized data cleaning system. PVLDB, 2013.
[14]
W. Fan. Dependencies revisited for improving data quality. In PODS, 2008.
[15]
W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional dependencies for capturing data inconsistencies. TODS, 2008.
[16]
W. Fan, F. Geerts, N. Tang, and W. Yu. Inferring data currency and consistency for conflict resolution. In ICDE, 2013.
[17]
W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. PVLDB, 2009.
[18]
W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Interaction between record matching and data repairing. In SIGMOD, 2011.
[19]
W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules and master data. VLDB J., 2012.
[20]
I. Fellegi and D. Holt. A systematic approach to automatic edit and imputation. J. American Statistical Association, 1976.
[21]
T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Quality and Record Linkage Techniques. Springer, 2009.
[22]
S. Kolahi and L. Lakshmanan. On approximating optimum repairs for functional dependency violations. In ICDT, 2009.
[23]
C. Mayfield, J. Neville, and S. Prabhakar. ERACER: a database approach for statistical inference and data cleaning. In SIGMOD, 2010.
[24]
F. Naumann, A. Bilke, J. Bleiholder, and M. Weis. Data fusion in three steps: Resolving schema, tuple, and value inconsistencies. IEEE Data Eng. Bull., 2006.
[25]
C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[26]
V. Raman and J. M. Hellerstein. Potter's Wheel: An interactive data cleaning system. In VLDB, 2001.
[27]
R. Singh and S. Gulwani. Learning semantic string transformations from examples. PVLDB, 2012.
[28]
M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas. Guided data repair. PVLDB, 2011.

Cited By

View all
  • (2024)BUNNI: Learning Repair Actions in Rule-driven Data CleaningJournal of Data and Information Quality10.1145/366593016:2(1-31)Online publication date: 25-May-2024
  • (2024)GARF: A Self-supervised Data Cleaning System with SeqGANProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679226(5260-5264)Online publication date: 21-Oct-2024
  • (2024)JsonCurer: Data Quality Management for JSON Based on an Aggregated SchemaIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.338855630:6(3008-3021)Online publication date: Jun-2024
  • Show More Cited By

Index Terms

  1. Towards dependable data repairing with fixing rules

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '14: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
    June 2014
    1645 pages
    ISBN:9781450323765
    DOI:10.1145/2588555
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 June 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. data cleaning rules
    2. data repairing
    3. dependable

    Qualifiers

    • Research-article

    Conference

    SIGMOD/PODS'14
    Sponsor:

    Acceptance Rates

    SIGMOD '14 Paper Acceptance Rate 107 of 421 submissions, 25%;
    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)30
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)BUNNI: Learning Repair Actions in Rule-driven Data CleaningJournal of Data and Information Quality10.1145/366593016:2(1-31)Online publication date: 25-May-2024
    • (2024)GARF: A Self-supervised Data Cleaning System with SeqGANProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679226(5260-5264)Online publication date: 21-Oct-2024
    • (2024)JsonCurer: Data Quality Management for JSON Based on an Aggregated SchemaIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.338855630:6(3008-3021)Online publication date: Jun-2024
    • (2024)BClean: A Bayesian Data Cleaning System2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00263(3407-3420)Online publication date: 13-May-2024
    • (2024)CrowdDA: Difficulty-aware crowdsourcing task optimization for cleaning web tablesExpert Systems with Applications10.1016/j.eswa.2023.122139238(122139)Online publication date: Mar-2024
    • (2023)Discovering Editing Rules by Deep Reinforcement Learning2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00034(355-367)Online publication date: Apr-2023
    • (2022)Self-Supervised and Interpretable Data Cleaning with Sequence Generative Adversarial NetworksProceedings of the VLDB Endowment10.14778/3570690.357069416:3(433-446)Online publication date: 1-Nov-2022
    • (2022)Possibilistic Data CleaningIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2021.306231834:12(5939-5950)Online publication date: 1-Dec-2022
    • (2022)A Novel Data Cleaning Framework Based on Knowledge Graph2022 8th International Conference on Big Data Computing and Communications (BigCom)10.1109/BigCom57025.2022.00050(350-355)Online publication date: Aug-2022
    • (2021)RPTProceedings of the VLDB Endowment10.14778/3457390.345739114:8(1254-1261)Online publication date: 21-Oct-2021
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media