skip to main content
10.1145/2591513.2591583acmconferencesArticle/Chapter ViewAbstractPublication PagesglsvlsiConference Proceedingsconference-collections
research-article

Variability-aware design of double gate FinFET-based current mirrors

Published:20 May 2014Publication History

ABSTRACT

With the technology trend moving towards smaller geometries and improved circuit performances, multigate transistors are expected to replace the traditional bulk devices. The double-gate FinFET lends itself to a rich design space using various configurations of the two gates. Accurate current mirroring is a critical analog design requirement in many applications. Current mirror is an essential component in analog design for biasing and constant current generation. This paper presents the exploration of different configurations of a double gate fully depleted SOI based FinFETs for efficient design of current mirror designs. In particular, comparison among the important Figures-of-Merit (FoMs) current mirror designs including mismatch, variability, output resistance ($r_0$), compliance voltage ($V_{CV}$) is presented for: (1) shorted-gate (SG), (2) independent-gate (IG), and (3) low-power (LP) configurations. Based on the results obtained, guidelines are presented for the designer for current mirror design using FinFET.

References

  1. Predictive Technology Model. http://ptm.asu.edu.Google ScholarGoogle Scholar
  2. R. J. Baker. CMOS Circuit Design, Layout, and Simulation. Wiley-IEEE Press, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. Chaudhuri and N. K. Jha. 3D vs. 2D analysis of FinFET logic gates under process variations. In Proceedings of the 29th International Conference on Computer Design, pages 435--436, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. S. Chaudhuri, P. Mishra, and N. K. Jha. Accurate Leakage Estimation for FinFET Standard Cells Using the Response Surface Methodology. In Proceedings of the 25th International Conference on VLSI Design, pages 238--244, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Ghai and S. P. Mohanty and G. Thakral. Comparative Analysis of Double Gate FinFET Configurations for Analog Circuit Design. In Proceedings of the 56th IEEE International Midwest Symposium on Circuits & Systems (MWSCAS), pages 809--812, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  6. B. Ebrahimi, M. Rostami, A. Afzali-Kusha, and M. Pedram. Statistical Design Optimization of FinFET SRAM Using Back-Gate Voltage. IEEE Transactions on VLSI Systems, 19(10):1911--1916, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. Fulde. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. M. Fulde, J. P. Engelstadter, G. Knoblinger, and D. Schmitt-Landsiedel. Analog Circuits using FinFETs: Benefits in Speed-Accuracy-Power Trade-Off and Simulation of Parasitic Effects. Advances in Radio Science, 5:285--290, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  9. H. F. A. Hamed, S. Kaya, and J. A. Starzyk. Use of nano-scale double-gate MOSFETs in low-power tunable current mode analog circuits. Analog Integrated Circuits and Signal Processing, 54(3):211--217, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. W. Han, C. J. Kim, and Y. K. Choi. Universal potential model in tied and separated double-gate MOSFETs with consideration of symmetric and asymmetric structure. IEEE Transactions on Electron Devices, 55(6):1472--1479, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. V. Joshi, K. Kim, and R. Kanj. FinFET SRAM Design. In Proceedings of the 23rd International Conference on VLSI Design, pages 440--445, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Kaya, H. F. A. Hamed, and J. A. Starzyk. Low-power tunable analog circuit blocks based on nanoscale double-gate MOSFETs. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(7):571--575, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  13. V. Kilchytska, N. Collaert, R. Rooyackers, D. Lederer, J. P. Raskin, and D. Flandre. Perspective of FinFETs for analog applications. In Proceedings of the 34th European Solid-State Device Research conference, pages 65--68, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Kim and J. G. Fossum. Double-gate CMOS: Symmetrical-versus asymmetrical-gate devices. IEEE Transactions on Electron Devices, 48(2):294--299, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  15. A. Kranti and G. Armstrong. Design and optimization of FinFETs for ultra-low-voltage analog applications. IEEE Transactions on Electron Devices, 54(12):3308--3316, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Kranti and G. Armstrong. Source/Drain extension region engineering in FinFETs for low-voltage analog applications. IEEE Electron Device Letters, 28(2):139--141, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  17. Z. Liu, S. A. Tawfik, and V. Kursun. Statistical Data Stability and Leakage Evaluation of FinFET SRAM Cells with Dynamic Threshold Voltage Tuning under Process Parameter Fluctuations. In Proceedings of the 9th International Symposium on Quality of Electronic Design, pages 305--310, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. A. Marshall, M. Kulkarni, M., Campise, R. Cleavelin, C. Duvvury, H. Gossner, M. Gostkowski, G. Knoblinger, C. Pacha, C. Russ, et al. Finfet current mirror design and evaluation. In Proceedings of the 2005 IEEE Dallas/CAS Workshop on Architecture, Circuits and Implementtation of SOCs, pages 187--190, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. S. P. Mohanty and E. Kougianos. Incorporating Manufacturing Process Variation Awareness in Fast Design Optimization of Nanoscale CMOS VCOs. IEEE Transactions on Semiconductor Manufacturing, 27(1):22--31, Feb 2014.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. P. Raskin, T. M. Chung, V. Kilchytska, D. Lederer, and D. Flandre. Analog/RF performance of multiple gate SOI devices: wideband simulations and characterization. IEEE Transactions on Electron Devices, 53(5):1088--1095, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  21. V. Subramanian, B. Parvais, J. Borremans, A. Mercha, D. Linten, P. Wambacq, J. Loo, M. Dehan, C. Gustin, N. Collaert, et al. Planar Bulk MOSFETs Versus FinFETs: An Analog/RF Perspective. IEEE Transactions on Electron Devices, 53(12):3071--3079, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. B. Swahn and S. Hassoun. Gate sizing: finFETs vs 32nm bulk MOSFETs. In Proceedings of the 43rd annual Design Automation Conference, pages 528--531, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Variability-aware design of double gate FinFET-based current mirrors

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      GLSVLSI '14: Proceedings of the 24th edition of the great lakes symposium on VLSI
      May 2014
      376 pages
      ISBN:9781450328166
      DOI:10.1145/2591513

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 20 May 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      GLSVLSI '14 Paper Acceptance Rate49of179submissions,27%Overall Acceptance Rate312of1,156submissions,27%

      Upcoming Conference

      GLSVLSI '24
      Great Lakes Symposium on VLSI 2024
      June 12 - 14, 2024
      Clearwater , FL , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader