skip to main content
research-article

Approximate Privacy: Foundations and Quantification

Published:01 July 2014Publication History
Skip Abstract Section

Abstract

The proliferation of online sensitive data about individuals and organizations makes concern about the privacy of these data a top priority. There have been many formulations of privacy and, unfortunately, many negative results about the feasibility of maintaining privacy of sensitive data in realistic networked environments. We formulate communication-complexity-based definitions, both worst case and average case, of a problem’s privacy-approximation ratio. We use our definitions to investigate the extent to which approximate privacy is achievable in a number of standard problems: the 2nd-price Vickrey auction, Yao’s millionaires problem, the public-good problem, and the set-theoretic disjointness and intersection problems.

For both the 2nd-price Vickrey auction and the millionaires problem, we show that not only is perfect privacy impossible or infeasibly costly to achieve, but even close approximations of perfect privacy suffer from the same lower bounds. By contrast, if the inputs are drawn uniformly at random from { 0,…, 2k-1}, then, for both problems, simple and natural communication protocols have privacy-approximation ratios that are linear in k (i.e., logarithmic in the size of the input space). We also demonstrate tradeoffs between privacy and communication in a family of auction protocols.

We show that the privacy-approximation ratio provided by any protocol for the disjointness and intersection problems is necessarily exponential (in k). We also use these ratios to argue that one protocol for each of these problems is significantly fairer than the others we consider (in the sense of relative effects on the privacy of the different players).

References

  1. Anil Ada, Arkadev Chattopadhyay, Stephen Cook, Lila Fontes, Michal Koucky, and Toniann Pitassi. 2012. The hardness of being private. In Proceedings of the 2012 IEEE Conference on Computational Complexity (CCC’12). IEEE Computer Society, Washington, DC, 192--202. DOI: http://dx.doi.org/10.1109/CCC.2012.24 Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Moshe Babaioff, Liad Blumrosen, Moni Naor, and Michael Schapira. 2008. Informational overhead of incentive compatibility. In Proceedings of the 9th ACM Conference on Electronic Commerce (EC’08). ACM, New York, NY, 88--97. DOI: http://dx.doi.org/10.1145/1386790.1386807 Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. R. Bar-Yehuda, B. Chor, E. Kushilevitz, and A. Orlitsky. 2006. Privacy, additional information and communication. IEEE Trans. Inf. Theor. 39, 6 (Sept. 2006), 1930--1943. DOI: http://dx.doi.org/10.1109/18.265501 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Amos Beimel, Paz Carmi, Kobbi Nissim, and Enav Weinreb. 2008. Private approximation of search problems. SIAM J. Comput. 38, 5 (Dec. 2008), 1728--1760. DOI: http://dx.doi.org/10.1137/060671899 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness theorems for non-cryptographic fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC’88). ACM, New York, NY, 1--10. DOI: http://dx.doi.org/10.1145/62212.62213 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Liad Blumrosen, Noam Nisan, and Ilya Segal. 2007. Auctions with severely bounded communication. J. Artif. Int. Res. 28, 1 (March 2007), 233--266. DOI: http://dx.doi.org/10.1613/jair.2081 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Felix Brandt and Tuomas Sandholm. 2008. On the existence of unconditionally privacy-preserving auction protocols. ACM Trans. Inf. Syst. Secur. 11, 2, Article 6 (May 2008), 21 pages. DOI: http://dx.doi.org/10.1145/1330332.1330338 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty unconditionally secure protocols. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC’88). ACM, New York, NY, 11--19. DOI: http://dx.doi.org/10.1145/62212.62214 Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Benny Chor and Eyal Kushilevitz. 1991. A zero-one law for Boolean privacy. SIAM J. Discret. Math. 4, 1 (Jan. 1991), 36--47. DOI: http://dx.doi.org/10.1137/0404004 Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Marco Comi, Bhaskar Dasgupta, Michael Schapira, and Venkatakumar Srinivasan. 2012. On communication protocols that compute almost privately. Theor. Comput. Sci. 457 (Oct. 2012), 45--58. DOI: http://dx.doi.org/10.1016/j.tcs.2012.07.008 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Yevgeniy Dodis, Shai Halevi, and Tal Rabin. 2000. A cryptographic solution to a game theoretic problem. In Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology (CRYPTO’00). Springer-Verlag, London, UK, 112--130. DOI: http://dx.doi.org/10.1007/3-540-44598-6_7 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cynthia Dwork. 2006. Differential privacy. In Proceedings of the 33rd International Conference on Automata, Languages and Programming - Volume Part II (ICALP’06). Springer-Verlag, Berlin, 1--12. DOI: http://dx.doi.org/10.1007/11787006_1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and Rebecca N. Wright. 2006. Secure multiparty computation of approximations. ACM Trans. Algorithms 2, 3 (July 2006), 435--472. DOI: http://dx.doi.org/10.1145/1159892.1159900 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Joan Feigenbaum, Aaron D. Jaggard, and Michael Schapira. 2010a. Approximate privacy: Foundations and quantification (extended abstract). In Proceedings of the 11th ACM Conference on Electronic Commerce (EC’10). ACM, New York, NY, 167--178. DOI: http://dx.doi.org/10.1145/1807342.1807369 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Joan Feigenbaum, Aaron D. Jaggard, and Michael Schapira. 2010b. Approximate privacy: PARs for set problems. Tech. rep. 2010-01. DIMACS. Also arXiv:1001.3388. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Joan Feigenbaum and Scott Shenker. 2002. Distributed algorithmic mechanism design: Recent results and future directions. In Proceedings of the 6th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM’02). ACM, New York, NY, 1--13. DOI: http://dx.doi.org/10.1145/570810.570812 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Yuzo Fujishima, David McAdams, and Yoav Shoham. 1999. Speeding up ascending-bid auctions. In Proceedings of the 16th International Joint Conference on Artifical Intelligence - Volume 1 (IJCAI’99). Morgan Kaufmann, San Francisco, CA, 554--559. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Arpita Ghosh and Aaron Roth. 2011. Selling privacy at auction. In Proceedings of the 12th ACM Conference on Electronic Commerce (EC’11). ACM, New York, NY, 199--208. DOI: http://dx.doi.org/10.1145/1993574.1993605 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally utility-maximizing privacy mechanisms. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09). ACM, New York, NY, 351--360. DOI: http://dx.doi.org/10.1145/1536414.1536464 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Elena Grigorieva, P. Jean-Jacques Herings, Rudolf Müller, and Dries Vermeulen. 2006. The communication complexity of private value single-item auctions. Oper. Res. Lett. 34, 5 (Sept. 2006), 491--498. DOI: http://dx.doi.org/10.1016/j.orl.2005.07.011 Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Elena Grigorieva, P. Jean-Jacques. Herings, Rudolf Mller, and Dries Vermeulen. 2007. The private value single item bisection auction. Economic Theory 30, 1 (2007), 107--118. DOI: http://dx.doi.org/10.1007/s00199-005-0032-zGoogle ScholarGoogle ScholarCross RefCross Ref
  22. Elena Grigorieva, P. Jean-Jacques Herings, Rudolf Mller, and Dries Vermeulen. 2010. On the fastest Vickrey algorithm. Algorithmica 58, 3 (2010), 566--590. DOI: http://dx.doi.org/10.1007/s00453-009-9285-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. 2001. Private approximation of NP-hard functions. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC’01). ACM, New York, NY, 550--559. DOI: http://dx.doi.org/10.1145/380752.380850 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Jean-Jacques Herings, Rudolf Müller, and Dries Vermeulen. 2009. Bisection auctions. SIGecom Exch. 8, 1, Article 6 (July 2009), 5 pages. DOI: http://dx.doi.org/10.1145/1598780.1598786 Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Eyal Kushilevitz. 1992. Privacy and communication complexity. SIAM J. Discret. Math. 5, 2 (May 1992), 273--284. DOI: http://dx.doi.org/10.1137/0405021 Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Eyal Kushilevitz and Noam Nisan. 1997. Communication Complexity. Cambridge University Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar, and Salil Vadhan. 2010. The limits of two-party differential privacy. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS’10). IEEE Computer Society, Washington, DC, USA, 81--90. DOI: http://dx.doi.org/10.1109/FOCS.2010.14 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Muthukrishnan. 2009. Challenges in Designing Ad Exchanges. (September 2009). Talk at the NSF Workshop on Research Issues at the Interface of Computer Science and Economics, Cornell University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Moni Naor, Benny Pinkas, and Reuban Sumner. 1999. Privacy preserving auctions and mechanism design. In Proceedings of the 1st ACM Conference on Electronic Commerce (EC’99). ACM, New York, NY, 129--139. DOI: http://dx.doi.org/10.1145/336992.337028 Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Noam Nisan. 2007. Introduction to mechanism design (for computer scientists). In Algorithmic Game Theory, Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani (Eds.). Cambridge University Press, New York, 209--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kobbi Nissim, Claudio Orlandi, and Rann Smorodinsky. 2012. Privacy-aware mechanism design. In Proceedings of the 13th ACM Conference on Electronic Commerce (EC’12). ACM, New York, NY, 774--789. DOI: http://dx.doi.org/10.1145/2229012.2229073 Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. OIES. 2010. The On-Line Encyclopedia of Integer Sequences. Retrieved from http://oeis.org.Google ScholarGoogle Scholar
  33. Xin Sui and Craig Boutilier. 2011. Efficiency and privacy tradeoffs in mechanism design. In AAAI Conference on Artificial Intelligence. Retrieved from http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3527. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. William Vickrey. 1961. Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16, 1 (1961), 8--37. DOI: http://dx.doi.org/10.1111/j.1540-6261.1961.tb02789.x Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Andrew C. Yao. 1982. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (SFCS’82). IEEE Computer Society, Washington, DC, 160--164. DOI: http://dx.doi.org/10.1109/SFCS.1982.88 Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Andrew Chi-Chih Yao. 1979. Some complexity questions related to distributive computing (preliminary report). In Proceedings of the 11th Annual ACM Symposium on Theory of Computing (STOC’79). ACM, New York, NY, 1209--213. DOI: http://dx.doi.org/10.1145/800135.804414 Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer Science (SFCS’86). IEEE Computer Society, Washington, DC, 162--167. DOI: http://dx.doi.org/10.1109/SFCS.1986.25 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Approximate Privacy: Foundations and Quantification

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Algorithms
        ACM Transactions on Algorithms  Volume 10, Issue 3
        June 2014
        176 pages
        ISSN:1549-6325
        EISSN:1549-6333
        DOI:10.1145/2620785
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2014
        • Accepted: 1 October 2013
        • Revised: 1 September 2013
        • Received: 1 April 2012
        Published in talg Volume 10, Issue 3

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader