skip to main content
research-article

The natural-constraint representation of the path space for efficient light transport simulation

Published: 27 July 2014 Publication History

Abstract

The path integral formulation of light transport is the basis for (Markov chain) Monte Carlo global illumination methods. In this paper we present half vector space light transport (HSLT), a novel approach to sampling and integrating light transport paths on surfaces. The key is a partitioning of the path space into subspaces in which a path is represented by its start and end point constraints and a sequence of generalized half vectors. We show that this representation has several benefits. It enables importance sampling of all interactions along paths in between two endpoints. Based on this, we propose a new mutation strategy, to be used with Markov chain Monte Carlo methods such as Metropolis light transport (MLT), which is well-suited for all types of surface transport paths (diffuse/glossy/specular interaction). One important characteristic of our approach is that the Fourier-domain properties of the path integral can be easily estimated. These can be used to achieve optimal correlation of the samples due to well-chosen mutation step sizes, leading to more efficient exploration of light transport features. We also propose a novel approach to control stratification in MLT with our mutation strategy.

Supplementary Material

ZIP File (a102-kaplanyan.zip)
Supplemental material.
MP4 File (a102-sidebyside.mp4)

References

[1]
Arvo, J. 1986. Backward ray tracing. In SIGGRAPH Course Notes, 259--263.
[2]
Ashikhmin, M., and Shirley, P. 2000. An anisotropic Phong BRDF model. Journal of Graphics Tools 5, 2, 25--32.
[3]
Bremaud, P. 1999. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer. ISBN 0-387-98509-3.
[4]
Cappé, O., Guillin, A., Marin, J.-M., and Robert, C. P. 2004. Population Monte Carlo. Journal of Computational and Graphical Statistics 13, 4.
[5]
Chen, J., Wang, B., and Yong, J.-H. 2011. Improved stochastic progressive photon mapping with Metropolis sampling. Computer Graphics Forum 30, 4, 1205--1213.
[6]
Cline, D., Talbot, J., and Egbert, P. K. 2005. Energy redistribution path tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1186--1195.
[7]
Dachsbacher, C., Krivánek, J., Hasan, M., Arbree, A., Walter, B., and Novák, J. 2013. Scalable realistic rendering with many-light methods. Computer Graphics Forum DOI: 10.1111/cgf.12256.
[8]
Fan, S., Chenney, S., and chi Lai, Y. 2005. Metropolis photon sampling with optional user guidance. In Proc. Eurographics Symposium on Rendering, 127--138.
[9]
Georgiev, I., Krivanek, J., Davidovic, T., and Slusallek, P. 2012. Light transport simulation with vertex connection and merging. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6, 192:1--192:10.
[10]
Hachisuka, T., and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. on Graphics 30, 5, 114:1--114:11.
[11]
Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 27, 5, 130:1--130:8.
[12]
Hachisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6, 191:1--191:10.
[13]
Hanika, J. 2011. Spectral light transport simulation using a precision-based ray tracing architecture. PhD thesis, Ulm University. VTS-ID/7539.
[14]
Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97--109.
[15]
Igehy, H. 1999. Tracing ray differentials. Proc. SIGGRAPH, 179--186.
[16]
Jakob, W., and Marschner, S. 2012. Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4, 58:1--58:13.
[17]
Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.
[18]
Jakob, W. 2013. Light transport on path-space manifolds. PhD thesis, Cornell University.
[19]
Jensen, H. W. 1996. Global illumination using photon maps. In Proc. Eurographics Workshop on Rendering, 21--30.
[20]
Kajiya, J. T. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH), 143--150.
[21]
Kaplanyan, A. S., and Dachsbacher, C. 2013. Adaptive progressive photon mapping. ACM Trans. on Graphics 32, 2, 16:1--16:13.
[22]
Kaplanyan, A. S., and Dachsbacher, C. 2013. Path space regularization for holistic and robust light transport. Computer Graphics Forum (Proc. of Eurographics) 32, 2, 63--72.
[23]
Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3, 531--540.
[24]
Keller, A. 1997. Instant radiosity. Proc. SIGGRAPH, 49--56.
[25]
Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. on Graphics 30, 3, 25:1--25:13.
[26]
Krivánek, J., Georgiev, I., Kaplanyan, A., and Canada, J. 2013. Recent advances in light transport simulation: Theory and practice. In ACM SIGGRAPH Courses.
[27]
Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. of COMPUGRAPHICS, 145--153.
[28]
Lehtinen, J., Karras, T., Laine, S., Aittala, M., Durand, F., and Aila, T. 2013. Gradient-domain Metropolis light transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 95:1--95:12.
[29]
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 6, 1087--1092.
[30]
Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Proc. Eurographics Workshop on Rendering, 11--22.
[31]
Shinya, M., Takahashi, T., and Naito, S. 1987. Principles and applications of pencil tracing. Computer Graphics (Proc. SIGGRAPH), 45--54.
[32]
Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. 1995. Global illumination via density-estimation. In Proc. Eurographics Workshop on Rendering, 219--230.
[33]
Sommerfeld, A., and Runge, J. 1911. Anwendung der Vektorrechnung auf die Grundlagen der geometrischen Optik. Annalen der Physik 340, 277--298.
[34]
Spivak, M. 1965. Calculus on manifolds. Addison-Wesley. ISBN 978-0-81-334612-0.
[35]
Subr, K., and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 128:1--128:12.
[36]
Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. Eurographics Workshop on Rendering, 147--162.
[37]
Veach, E., and Guibas, L. J. 1997. Metropolis light transport. Proc. SIGGRAPH, 65--76.
[38]
Veach, E. 1998. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford University. AAI9837162.
[39]
Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1098--1107.
[40]
Walter, B., Marschner, S., Li, H., and Torrance, K. 2007. Microfacet models for refraction through rough surfaces. In Proc. Eurographics Symposium on Rendering, 195--206.
[41]
Walter, B., Khungurn, P., and Bala, K. 2012. Bidirectional lightcuts. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4, 59:1--59:11.

Cited By

View all
  • (2024)Efficiency Investigation of Langevin Monte Carlo Ray TracingMathematics10.3390/math1221343712:21(3437)Online publication date: 3-Nov-2024
  • (2024)Photon-Driven Manifold SamplingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753757:3(1-16)Online publication date: 9-Aug-2024
  • (2024)Specular PolynomialsACM Transactions on Graphics10.1145/365813243:4(1-13)Online publication date: 19-Jul-2024
  • Show More Cited By

Index Terms

  1. The natural-constraint representation of the path space for efficient light transport simulation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 33, Issue 4
    July 2014
    1366 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2601097
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2014
    Published in TOG Volume 33, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. global illumination
    2. metropolis light transport

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)21
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Efficiency Investigation of Langevin Monte Carlo Ray TracingMathematics10.3390/math1221343712:21(3437)Online publication date: 3-Nov-2024
    • (2024)Photon-Driven Manifold SamplingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753757:3(1-16)Online publication date: 9-Aug-2024
    • (2024)Specular PolynomialsACM Transactions on Graphics10.1145/365813243:4(1-13)Online publication date: 19-Jul-2024
    • (2023)USING MULTILEVEL HASH TABLES TO SPEED UP RENDERINGПрограммирование10.31857/S013234742303007X(37-48)Online publication date: 1-May-2023
    • (2023)Langevin dynamics in stochastic ray tracing: computing the preconditioning matrix according to restrictions and choice of time stepKeldysh Institute Preprints10.20948/prepr-2023-63(1-26)Online publication date: 2023
    • (2023)Decorrelating ReSTIR Samplers via MCMC MutationsACM Transactions on Graphics10.1145/362916643:1(1-15)Online publication date: 19-Oct-2023
    • (2023)Manifold Path Guiding for Importance Sampling Specular ChainsACM Transactions on Graphics10.1145/361836042:6(1-14)Online publication date: 5-Dec-2023
    • (2023)Extended Path Space Manifolds for Physically Based Differentiable RenderingSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618195(1-11)Online publication date: 10-Dec-2023
    • (2023)A Gentle Introduction to ReSTIR Path Reuse in Real-TimeACM SIGGRAPH 2023 Courses10.1145/3587423.3595511(1-38)Online publication date: 24-Jul-2023
    • (2023)Using Multilevel Hash Tables to Speed up RenderingProgramming and Computer Software10.1134/S036176882303007649:3(161-171)Online publication date: 26-May-2023
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media