skip to main content
research-article

The natural-constraint representation of the path space for efficient light transport simulation

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

The path integral formulation of light transport is the basis for (Markov chain) Monte Carlo global illumination methods. In this paper we present half vector space light transport (HSLT), a novel approach to sampling and integrating light transport paths on surfaces. The key is a partitioning of the path space into subspaces in which a path is represented by its start and end point constraints and a sequence of generalized half vectors. We show that this representation has several benefits. It enables importance sampling of all interactions along paths in between two endpoints. Based on this, we propose a new mutation strategy, to be used with Markov chain Monte Carlo methods such as Metropolis light transport (MLT), which is well-suited for all types of surface transport paths (diffuse/glossy/specular interaction). One important characteristic of our approach is that the Fourier-domain properties of the path integral can be easily estimated. These can be used to achieve optimal correlation of the samples due to well-chosen mutation step sizes, leading to more efficient exploration of light transport features. We also propose a novel approach to control stratification in MLT with our mutation strategy.

Skip Supplemental Material Section

Supplemental Material

a102-sidebyside.mp4

mp4

12.9 MB

References

  1. Arvo, J. 1986. Backward ray tracing. In SIGGRAPH Course Notes, 259--263.Google ScholarGoogle Scholar
  2. Ashikhmin, M., and Shirley, P. 2000. An anisotropic Phong BRDF model. Journal of Graphics Tools 5, 2, 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bremaud, P. 1999. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer. ISBN 0-387-98509-3.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cappé, O., Guillin, A., Marin, J.-M., and Robert, C. P. 2004. Population Monte Carlo. Journal of Computational and Graphical Statistics 13, 4.Google ScholarGoogle ScholarCross RefCross Ref
  5. Chen, J., Wang, B., and Yong, J.-H. 2011. Improved stochastic progressive photon mapping with Metropolis sampling. Computer Graphics Forum 30, 4, 1205--1213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cline, D., Talbot, J., and Egbert, P. K. 2005. Energy redistribution path tracing. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1186--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dachsbacher, C., Krivánek, J., Hasan, M., Arbree, A., Walter, B., and Novák, J. 2013. Scalable realistic rendering with many-light methods. Computer Graphics Forum DOI: 10.1111/cgf.12256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fan, S., Chenney, S., and chi Lai, Y. 2005. Metropolis photon sampling with optional user guidance. In Proc. Eurographics Symposium on Rendering, 127--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Georgiev, I., Krivanek, J., Davidovic, T., and Slusallek, P. 2012. Light transport simulation with vertex connection and merging. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6, 192:1--192:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hachisuka, T., and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. on Graphics 30, 5, 114:1--114:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 27, 5, 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hachisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 31, 6, 191:1--191:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hanika, J. 2011. Spectral light transport simulation using a precision-based ray tracing architecture. PhD thesis, Ulm University. VTS-ID/7539.Google ScholarGoogle Scholar
  14. Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 1, 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  15. Igehy, H. 1999. Tracing ray differentials. Proc. SIGGRAPH, 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jakob, W., and Marschner, S. 2012. Manifold exploration: a Markov chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4, 58:1--58:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  18. Jakob, W. 2013. Light transport on path-space manifolds. PhD thesis, Cornell University.Google ScholarGoogle Scholar
  19. Jensen, H. W. 1996. Global illumination using photon maps. In Proc. Eurographics Workshop on Rendering, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kajiya, J. T. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH), 143--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kaplanyan, A. S., and Dachsbacher, C. 2013. Adaptive progressive photon mapping. ACM Trans. on Graphics 32, 2, 16:1--16:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kaplanyan, A. S., and Dachsbacher, C. 2013. Path space regularization for holistic and robust light transport. Computer Graphics Forum (Proc. of Eurographics) 32, 2, 63--72.Google ScholarGoogle ScholarCross RefCross Ref
  23. Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3, 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  24. Keller, A. 1997. Instant radiosity. Proc. SIGGRAPH, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Knaus, C., and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. on Graphics 30, 3, 25:1--25:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Krivánek, J., Georgiev, I., Kaplanyan, A., and Canada, J. 2013. Recent advances in light transport simulation: Theory and practice. In ACM SIGGRAPH Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. of COMPUGRAPHICS, 145--153.Google ScholarGoogle Scholar
  28. Lehtinen, J., Karras, T., Laine, S., Aittala, M., Durand, F., and Aila, T. 2013. Gradient-domain Metropolis light transport. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 95:1--95:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21, 6, 1087--1092.Google ScholarGoogle ScholarCross RefCross Ref
  30. Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Proc. Eurographics Workshop on Rendering, 11--22.Google ScholarGoogle ScholarCross RefCross Ref
  31. Shinya, M., Takahashi, T., and Naito, S. 1987. Principles and applications of pencil tracing. Computer Graphics (Proc. SIGGRAPH), 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. 1995. Global illumination via density-estimation. In Proc. Eurographics Workshop on Rendering, 219--230.Google ScholarGoogle Scholar
  33. Sommerfeld, A., and Runge, J. 1911. Anwendung der Vektorrechnung auf die Grundlagen der geometrischen Optik. Annalen der Physik 340, 277--298.Google ScholarGoogle ScholarCross RefCross Ref
  34. Spivak, M. 1965. Calculus on manifolds. Addison-Wesley. ISBN 978-0-81-334612-0.Google ScholarGoogle Scholar
  35. Subr, K., and Kautz, J. 2013. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 128:1--128:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. Eurographics Workshop on Rendering, 147--162.Google ScholarGoogle Scholar
  37. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. Proc. SIGGRAPH, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Veach, E. 1998. Robust Monte Carlo methods for light transport simulation. PhD thesis, Stanford University. AAI9837162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: a scalable approach to illumination. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Walter, B., Marschner, S., Li, H., and Torrance, K. 2007. Microfacet models for refraction through rough surfaces. In Proc. Eurographics Symposium on Rendering, 195--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Walter, B., Khungurn, P., and Bala, K. 2012. Bidirectional lightcuts. ACM Trans. on Graphics (Proc. SIGGRAPH) 31, 4, 59:1--59:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. The natural-constraint representation of the path space for efficient light transport simulation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 4
      July 2014
      1366 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2601097
      Issue’s Table of Contents

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 July 2014
      Published in tog Volume 33, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader