skip to main content
research-article

Cascaded displays: spatiotemporal superresolution using offset pixel layers

Published: 27 July 2014 Publication History

Abstract

We demonstrate that layered spatial light modulators (SLMs), subject to fixed lateral displacements and refreshed at staggered intervals, can synthesize images with greater spatiotemporal resolution than that afforded by any single SLM used in their construction. Dubbed cascaded displays, such architectures enable superresolution flat panel displays (e.g., using thin stacks of liquid crystal displays (LCDs)) and digital projectors (e.g., relaying the image of one SLM onto another). We introduce a comprehensive optimization framework, leveraging non-negative matrix and tensor factorization, that decomposes target images and videos into multi-layered, time-multiplexed attenuation patterns---offering a flexible trade-off between apparent image brightness, spatial resolution, and refresh rate. Through this analysis, we develop a real-time dual-layer factorization method that quadruples spatial resolution and doubles refresh rate. Compared to prior superresolution displays, cascaded displays place fewer restrictions on the hardware, offering thin designs without moving parts or the necessity of temporal multiplexing. Furthermore, cascaded displays are the first use of multi-layer displays to increase apparent temporal resolution. We validate these concepts using two custom-built prototypes: a dual-layer LCD and a dual-modulation liquid crystal on silicon (LCoS) projector, with the former emphasizing head-mounted display (HMD) applications.

Supplementary Material

ZIP File (a60-heide.zip)
Supplemental material.
MP4 File (a60-sidebyside.mp4)

References

[1]
Aliaga, D. G., Yeung, Y. H., Law, A., Sajadi, B., and Majumder, A. 2012. Fast high-resolution appearance editing using superimposed projections. ACM Trans. Graph. 31, 2.
[2]
Allen, W., and Ulichney, R. 2005. Wobulation: Doubling the addressed resolution of projection displays. SID Symposium Digest of Technical Papers 36, 1, 1514--1517.
[3]
Baker, S., and Kanade, T. 2002. Limits on super-resolution and how to break them. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 9, 1167--1183.
[4]
Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi layer displays with real depth. SID Digest 39, 1, 352--355.
[5]
Ben-Ezra, M., Zomet, A., and Nayar, S. K. 2004. Jitter camera: High resolution video from a low resolution detector. In IEEE Computer Vision and Pattern Recognition (CVPR), 135--142.
[6]
Berthouzoz, F., and Fattal, R. 2012. Apparent resolution enhancement for motion videos. In ACM Applied Perception.
[7]
Berthouzoz, F., and Fattal, R. 2012. Resolution enhancement by vibrating displays. ACM Trans. Graph. 31, 2, 15:1--15:14.
[8]
Blondel, V., Ho, N.-D., and van Dooren, P. 2008. Weighted nonnegative matrix factorization and face feature extraction. In Image and Vision Computing, 1--17.
[9]
Damera-Venkata, N., and Chang, N. L. 2009. Display supersampling. ACM Trans. Graph. 28, 1, 9:1--9:19.
[10]
Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Apparent display resolution enhancement for moving images. ACM Trans. Graph. 29, 4, 113:1--113:8.
[11]
Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE Stereoscopic Displays and Applications XXI, vol. 7524, 1--8.
[12]
Gotoda, H. 2011. Reduction of image blurring in an autostereoscopic multilayer liquid crystal display. In SPIE Stereoscopic Displays and Applications XXII, vol. 7863, 1--7.
[13]
Hart, W. M. 1987. The temporal responsiveness of vision. In Adler's Physiology of the Eye, R. A. Moses and W. M. Hart, Eds. C. V. Moseby Company.
[14]
Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive image synthesis for compressive displays. ACM Trans. Graph. 32, 4, 132:1--132:12.
[15]
Heide, F., Gregson, J., Wetzstein, G., Raskar, R., and Heidrich, W. 2014. A compressive multi-mode superresolution display. Technical Report arXiv:1404.5916.
[16]
Ho, N.-D. 2008. Nonnegative Matrix Factorization Algorithms and Applications. PhD thesis, Université catholique de Louvain.
[17]
Ives, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.
[18]
Jaynes, C., and Ramakrishnan, D. 2003. Super-resolution composition in multi-projector displays. In IEEE Projector-Camera Systems (PROCAMS).
[19]
Kusakabe, Y., Kanazawa, M., Nojiri, Y., Furuya, M., and Yoshimura, M. 2008. A YC-separation-type projector: High dynamic range with double modulation. Journal of the Society for Information Display 16, 2, 383--391.
[20]
Kusakabe, Y., Kanazawa, M., Nojiri, Y., Furuya, M., and Yoshimura, M. 2009. A high-dynamic-range and high-resolution projector with dual modulation. Proc. SPIE 7241.
[21]
Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: Optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 6, 163:1--163:10.
[22]
Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30, 6, 186:1--186:10.
[23]
Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821--825.
[24]
Majumder, A. 2005. Is spatial super-resolution feasible using overlapping projectors? In IEEE Acoustics, Speech, and Signal Processing (ICASSP), vol. 4.
[25]
Olson, J., Krum, D., Suma, E., and Bolas, M. 2011. A design for a smartphone-based head mounted display. In IEEE Virtual Reality, 233--234.
[26]
Pavlovych, A., and Stuerzlinger, W. 2005. A high-dynamic range projection system. Proc. SPIE 5969.
[27]
Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. 31, 4, 79:1--79:122.
[28]
Sajadi, B., Qoc-Lai, D., Ihler, A., Gopi, M., and Majumder, A. 2013. Image enhancement in projectors via optical pixel shift and overlay. In IEEE International Conference on Computational Photography (ICCP), 1--10.
[29]
Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23, 3, 760--768.
[30]
Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4, 600--612.
[31]
Watson, B. A., and Hodges, L. F. 1995. Using texture maps to correct for optical distortion in head-mounted displays. In IEEE Virtual Reality Annual International Symposium, 172--178.
[32]
Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4, 95:1--95:12.
[33]
Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 4, 80:1--80:11.
[34]
Woo, S., Kim, D.-H., Han, Y. S., and Choi, B.-D. 2011. Full-color LCD microdisplay system based on OLED backlight unit and field-sequential color driving method. Journal of Photoenergy.

Cited By

View all
  • (2025)Temporal Fusion: Continuous-Time Light Field Video FactorizationIEEE Transactions on Image Processing10.1109/TIP.2025.353320334(955-968)Online publication date: 1-Jan-2025
  • (2025)Enhancing display resolution through virtual pixel creation: a software-based approach for existing displaysVirtual Reality10.1007/s10055-024-01091-z29:1Online publication date: 8-Feb-2025
  • (2024)基于U-Net的压缩光场显示图案生成方法Acta Optica Sinica10.3788/AOS23168344:10(1026027)Online publication date: 2024
  • Show More Cited By

Index Terms

  1. Cascaded displays: spatiotemporal superresolution using offset pixel layers

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 33, Issue 4
      July 2014
      1366 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2601097
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 July 2014
      Published in TOG Volume 33, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. dual modulation displays
      2. multi-layer displays
      3. non-negative matrix and tensor factorization
      4. superresolution

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)15
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 28 Feb 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2025)Temporal Fusion: Continuous-Time Light Field Video FactorizationIEEE Transactions on Image Processing10.1109/TIP.2025.353320334(955-968)Online publication date: 1-Jan-2025
      • (2025)Enhancing display resolution through virtual pixel creation: a software-based approach for existing displaysVirtual Reality10.1007/s10055-024-01091-z29:1Online publication date: 8-Feb-2025
      • (2024)基于U-Net的压缩光场显示图案生成方法Acta Optica Sinica10.3788/AOS23168344:10(1026027)Online publication date: 2024
      • (2024)VLSI Design of Light-Field Factorization for Dual-Layer Factored DisplayIEEE Transactions on Very Large Scale Integration (VLSI) Systems10.1109/TVLSI.2024.341426232:11(2093-2106)Online publication date: 1-Nov-2024
      • (2024)GPU Accelerated 3D Tomographic Reconstruction and Visualization From Noisy Electron Microscopy Tilt-SeriesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.323044530:7(3331-3345)Online publication date: 1-Jul-2024
      • (2024)Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image RestorationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2024.338353246:10(6577-6593)Online publication date: 1-Oct-2024
      • (2024)DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile DevicesIEEE Transactions on Image Processing10.1109/TIP.2024.349783833(6592-6606)Online publication date: 1-Jan-2024
      • (2024)EBDNet: Integrating Optical Flow With Kernel Prediction for Burst DenoisingIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2024.338386234:9(8456-8468)Online publication date: 1-Sep-2024
      • (2023)LeCA: In-Sensor Learned Compressive Acquisition for Efficient Machine Vision on the EdgeProceedings of the 50th Annual International Symposium on Computer Architecture10.1145/3579371.3589089(1-14)Online publication date: 17-Jun-2023
      • (2023)A Monocular Projector-Camera System Using Modular ArchitectureIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.321726629:12(5586-5592)Online publication date: Dec-2023
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media