skip to main content
research-article

Blending liquids

Published: 27 July 2014 Publication History

Abstract

We present a method for smoothly blending between existing liquid animations. We introduce a semi-automatic method for matching two existing liquid animations, which we use to create new fluid motion that plausibly interpolates the input. Our contributions include a new space-time non-rigid iterative closest point algorithm that incorporates user guidance, a subsampling technique for efficient registration of meshes with millions of vertices, and a fast surface extraction algorithm that produces 3D triangle meshes from a 4D space-time surface. Our technique can be used to instantly create hundreds of new simulations, or to interactively explore complex parameter spaces. Our method is guaranteed to produce output that does not deviate from the input animations, and it generalizes to multiple dimensions. Because our method runs at interactive rates after the initial precomputation step, it has potential applications in games and training simulations.

Supplementary Material

ZIP File (a137-raveendran.zip)
Supplemental material.
MP4 File (a137-sidebyside.mp4)

References

[1]
Amberg, B., Romdhani, S., and Vetter, T. 2007. Optimal step nonrigid ICP algorithms for surface registration. In IEEE Conf. Computer Vision and Pattern Recognition, CVPR '07, 1--8.
[2]
Autodesk, 2013. Maya software.
[3]
Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 2 (Feb.), 239--256.
[4]
Bojsen-Hansen, M., Li, H., and Wojtan, C. 2012. Tracking surfaces with evolving topology. ACM Trans. Graph. 31, 4 (July), 53:1--53:10.
[5]
Breen, D. E., and Whitaker, R. T. 2001. A level-set approach for the metamorphosis of solid models. IEEE Trans. Visualization and Computer Graphics 7, 2 (Apr.), 173--192.
[6]
Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4 (July), 47:1--47:9.
[7]
Brown, B., and Rusinkiewicz, S. 2007. Global non-rigid alignment of 3-D scans. ACM Trans. Graph. 26, 3 (Aug.).
[8]
Cohen-Or, D., Solomovic, A., and Levin, D. 1998. Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17, 2 (Apr.), 116--141.
[9]
Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the Particle Level Set Method and a Second Order Accurate Pressure Boundary Condition for Free-Surface Flows. Proc. Joint Fluids Engineering Conference.
[10]
Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models Image Process. 58, 5 (Sept.), 471--483.
[11]
Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. 2003. Geometrically stable sampling for the ICP algorithm. In Int. Conference on 3D Digital Imaging and Modeling (3DIM).
[12]
Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. 2005. Robust global registration. In Symposium on Geometry Processing, Eurographics Association, SGP '05.
[13]
Hähnel, D., Thrun, S., and Burgard, W. 2003. An extension of the ICP algorithm for modeling nonrigid objects with mobile robots. In Proc. of the Int. Joint Conference on Artificial Intelligence, IJCAI.
[14]
Klein, A. W., Sloan, P.-P. J., Finkelstein, A., and Cohen, M. F. 2002. Stylized video cubes. In ACM SIGGRAPH Symposium on Computer Animation, 15--22.
[15]
Kwatra, V., and Rossignac, J. 2002. Space-time surface simplification and edgebreaker compression for 2d cel animations. Int. Journal of Shape Modeling 8, 2, 119--137.
[16]
Li, H., Adams, B., Guibas, L. J., and Pauly, M. 2009. Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (Dec.), 175:1--175:10.
[17]
Li, H., Luo, L., Vlasic, D., Peers, P., Popović, J., Pauly, M., and Rusinkiewicz, S. 2012. Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (Feb.), 2:1--2:11.
[18]
McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23 (August), 449--456.
[19]
Misztal, M. K., Erleben, K., Bargteil, A., Fursund, J., Christensen, B. B., Bærentzen, J. A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Proc. Symposium on Computer Animation, Eurographics Association, SCA '12, 97--106.
[20]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. Symposium on Computer Animation, Eurographics Association, 154--159.
[21]
Nielsen, M. B., and Bridson, R. 2011. Guide shapes for high resolution naturalistic liquid simulation. ACM, New York, NY, USA, vol. 30, 83:1--83:8.
[22]
Osher, S., and Fedkiw, R. 2002. Level set methods and dynamic implicit surfaces. Springer Verlag.
[23]
Pan, Z., Huang, J., Tong, Y., Zheng, C., and Bao, H. 2013. Interactive localized liquid motion editing. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6 (Nov.).
[24]
Papazov, C., and Burschka, D. 2011. Deformable 3d shape registration based on local similarity transforms. Computer Graphics Forum 30, 5, 1493--1502.
[25]
Raveendran, K., Thuerey, N., Wojtan, C., and Turk, G. 2012. Controlling liquids using meshes. In Proce. Symposium on Computer Animation, Eurographics Association, SCA '12, 255--264.
[26]
Rusinkiewicz, S., and Levoy, M. 2001. Efficient variants of the icp algorithm. In Proc. 3D Digital Imaging and Modeling, 145--152.
[27]
Schmid, J., Sumner, R. W., Bowles, H., and Gross, M. 2010. Programmable motion effects. ACM Trans. Graph. 29, 4 (July), 57:1--57:9.
[28]
Shi, L., and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Symposium on Computer animation, ACM, SCA '05, 229--236.
[29]
Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Trans. Graph. 28, 3 (July), 40:1--40:6.
[30]
Stam, J. 1999. Stable fluids. In Proc. SIGGRAPH, ACM, 121--128.
[31]
Sumner, R. W., Schmid, J., and Pauly, M. 2007. Embedded deformation for shape manipulation. In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH '07.
[32]
Szeliski, R. 1996. Matching 3-d anatomical surfaces with non-rigid deformations using octree-splines. Int. Journal of Computer Vision 18, 171--186.
[33]
Taubin, G. 1995. A signal processing approach to fair surface design. In Proceedings of SIGGRAPH 95, Annual Conference Series, 351--358.
[34]
Tevs, A., Berner, A., Wand, M., Ihrke, I., Bokeloh, M., Kerber, J., and Seidel, H.-P. 2012. Animation cartography-intrinsic reconstruction of shape and motion. ACM Transactions on Graphics (TOG) 31, 2, 12.
[35]
Thuerey, N., Keiser, R., Ruede, U., and Pauly, M. 2006. Detail-Preserving Fluid Control. Symposium on Computer Animation (Jun), 7--12.
[36]
Turk, G., and O'Brien, J. F. 1999. Shape transformation using variational implicit functions. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, SIGGRAPH '99, 335--342.
[37]
Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29 (July), 50:1--50:8.
[38]
Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, 217--225.
[39]
Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., and Paragios, N. 2010. Dense non-rigid surface registration using high-order graph matching. In IEEE Conf. Computer Vision and Pattern Recognition, CVPR 2010, 382--389.
[40]
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (July), 965--972.

Cited By

View all
  • (2024)Fluid Control with Laplacian EigenfunctionsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657468(1-11)Online publication date: 13-Jul-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
  • (2023)Physics‐Informed Neural Corrector for Deformation‐based Fluid ControlComputer Graphics Forum10.1111/cgf.1475142:2(161-173)Online publication date: 23-May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 33, Issue 4
July 2014
1366 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2601097
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2014
Published in TOG Volume 33, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. fluid simulation
  2. non-rigid registration
  3. shape blending

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)2
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Fluid Control with Laplacian EigenfunctionsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657468(1-11)Online publication date: 13-Jul-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
  • (2023)Physics‐Informed Neural Corrector for Deformation‐based Fluid ControlComputer Graphics Forum10.1111/cgf.1475142:2(161-173)Online publication date: 23-May-2023
  • (2023)Fully probabilistic deep models for forward and inverse problems in parametric PDEsJournal of Computational Physics10.1016/j.jcp.2023.112369491(112369)Online publication date: Oct-2023
  • (2022)Time Reversal and Simulation Merging for Target-Driven Fluid AnimationProceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3561975.3562952(1-9)Online publication date: 3-Nov-2022
  • (2022)Versatile Control of Fluid-directed Solid Objects Using Multi-task Reinforcement LearningACM Transactions on Graphics10.1145/355473142:2(1-14)Online publication date: 18-Oct-2022
  • (2022)Reconstructing and editing fluids using the adaptive multilayer external force guiding modelScience China Information Sciences10.1007/s11432-020-3322-x65:11Online publication date: 25-Oct-2022
  • (2022)Virtual water wave simulation with multiple wavenumbersVirtual Reality10.1007/s10055-022-00729-027:2(1221-1231)Online publication date: 7-Dec-2022
  • (2022)Fluid Simulation with a Dense Space-Time Deformation via $$L_0$$ Gradient MinimizationFrontier Computing10.1007/978-981-16-0115-6_12(125-137)Online publication date: 1-Jan-2022
  • (2021)Generalized fluid carving with fast lattice-guided seam computationACM Transactions on Graphics10.1145/3478513.348054440:6(1-15)Online publication date: 10-Dec-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media