skip to main content
research-article

Pteromys: interactive design and optimization of free-formed free-flight model airplanes

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

This paper introduces novel interactive techniques for designing original hand-launched free-flight glider airplanes which can actually fly. The aerodynamic properties of a glider aircraft depend on their shape, imposing significant design constraints. We present a compact and efficient representation of glider aerodynamics that can be fit to real-world conditions using a data-driven method. To do so, we acquire a sample set of glider flight trajectories using a video camera and the system learns a nonlinear relationship between forces on the wing and wing shape. Our acquisition system is much simpler to construct than a wind tunnel, but using it we can efficiently discover a wing model for simple gliding aircraft. Our resulting model can handle general free-form wing shapes and yet agrees sufficiently well with the acquired airplane flight trajectories. Based on this compact aerodynamics model, we present a design tool in which the wing configuration created by a user is interactively optimized to maximize flight-ability. To demonstrate the effectiveness of our tool for glider design by novice users, we compare it with a traditional design workflow.

Skip Supplemental Material Section

Supplemental Material

a65-sidebyside.mp4

mp4

20.6 MB

References

  1. Abbott, I. H. 1959. Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications.Google ScholarGoogle Scholar
  2. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM TOG 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM TOG 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM TOG 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. ACM TOG 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM TOG 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Hildebrand, K., Bickel, B., and Alexa, M. 2012. Crdbrd: Shape fabrication by sliding planar slices. CGF 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM TOG 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Igarashi, Y., Igarashi, T., and Mitani, J. 2012. Beady: Interactive beadwork design and construction. ACM TOG 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Ju, E., Won, J., Lee, J., Choi, B., Noh, J., and Choi, M. G. 2013. Data-driven control of flapping flight. ACM TOG 32, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Li, X.-Y., Ju, T., Gu, Y., and Hu, S.-M. 2011. A geometric study of v-style pop-ups: Theories and algorithms. ACM TOG 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Luo, L., Baran, I., Rusinkiewicz, S., and Matusik, W. 2012. Chopper: Partitioning models into 3D-printable parts. ACM TOG 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. McCrae, J., Singh, K., and Mitra, N. J. 2011. Slices: A shape-proxy based on planar sections. ACM TOG 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S. C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., and Otaduy, M. A. 2013. Modeling and estimation of internal friction in cloth. ACM TOG 32, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Otaduy, M. A., Bickel, B., Bradley, D., and Wang, H. 2012. Data-driven simulation methods in computer graphics: Cloth, tissue and faces. In SIGGRAPH Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Pai, D. K., Doel, K. v. d., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3D objects. In Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Panozzo, D., Block, P., and Sorkine-Hornung, O. 2013. Designing unreinforced masonry models. ACM TOG 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Perkins, C. D., and Hage, R. E. 1949. Airplane Performance, Stability and Control, 1 ed. Wiley, 1.Google ScholarGoogle Scholar
  19. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: Balancing shapes for 3D fabrication. ACM TOG 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Schmidt, R., and Ratto, M. 2013. Design-to-fabricate: Maker hardware requires maker software. IEEE CG&A 33, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. CGF 32, 2.Google ScholarGoogle ScholarCross RefCross Ref
  22. Shevell, R. S. 1988. Fundamentals of Flight (2nd Edition), 2 ed. Prentice Hall, 8.Google ScholarGoogle Scholar
  23. Sobieszczanski-Sobieski, J., and Haftka, R. T. 1997. Multidisciplinary aerospace design optimization: survey of recent developments. Structural optimization 14, 1.Google ScholarGoogle Scholar
  24. Song, P., Fu, C.-W., Goswami, P., Zheng, J., Mitra, N. J., and Cohen-Or, D. 2013. Reciprocal frame structures made easy. ACM TOG 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3D printable objects. ACM TOG 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM TOG 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM TOG 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM TOG 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: Modeling and measurement. ACM TOG 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weissmann, S., and Pinkall, U. 2012. Underwater rigid body dynamics. ACM TOG 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM TOG 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM TOG 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pteromys: interactive design and optimization of free-formed free-flight model airplanes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 4
          July 2014
          1366 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2601097
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2014
          Published in tog Volume 33, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader