skip to main content
research-article

Detailed water with coarse grids: combining surface meshes and adaptive discontinuous Galerkin

Published:27 July 2014Publication History
Skip Abstract Section

Abstract

We present a new adaptive fluid simulation method that captures a high resolution surface with precise dynamics, without an inefficient fine discretization of the entire fluid volume. Prior adaptive methods using octrees or unstructured meshes carry large overheads and implementation complexity. We instead stick with coarse regular Cartesian grids, using detailed cut cells at boundaries, and discretize the dynamics with a p-adaptive Discontinuous Galerkin (DG) method. This retains much of the data structure simplicity of regular grids, more efficiently captures smooth parts of the flow, and offers the flexibility to easily increase resolving power where needed without geometric refinement.

Skip Supplemental Material Section

Supplemental Material

a136-sidebyside.mp4

mp4

61.8 MB

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ando, R., Thürey, N., and Tsuruno, R. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Transactions on Visualization and Computer Graphics 18, 8, 1202--1214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ando, R., Thürey, N., and Wojtan, C. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. (Proc. SIGGRAPH 2013) (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Arnold, D., Brezzi, F., Cockburn, B., and Marini, L. 2002. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM journal on numerical analysis 39, 5, 1749--1779. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Babuska, I., and Guo, B. 1992. The h, p and hp version of the finite element method basic theory and applications. NASA STI/Recon Technical Report N 93, 22550.Google ScholarGoogle Scholar
  6. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Proceedings of Eurographics.Google ScholarGoogle Scholar
  7. Bojsen-Hansen, M., and Wojtan, C. 2013. Liquid surface tracking with error compensation. ACM Transactions on Graphics (SIGGRAPH 2013) 32, 4, 79:1--79:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Boyd, J. P. 2001. Chebyshev and Fourier spectral methods. Courier Dover Publications.Google ScholarGoogle Scholar
  9. Bridson, R. 2008. Fluid Simulation for Computer Graphics. A K Peters/CRC Press, Sept. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Castillo, P., Cockburn, B., Perugia, I., and Schötzau, D. 2000. An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM Journal on Numerical Analysis 38, 5, 1676--1706. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Castillo, P. 2006. A review of the local discontinuous Galerkin (LDG) method applied to elliptic problems. Applied numerical mathematics 56, 10, 1307--1313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chentanez, N., and Müller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid. In ACM SIGGRAPH 2011 Papers, ACM, New York, NY, USA, SIGGRAPH '11, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '07, 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cockburn, B., Kanschat, G., and Schötzau, D. 2005. The local discontinuous Galerkin method for linearized incompressible fluid flow: a review. Computers & fluids 34, 4, 491--506.Google ScholarGoogle Scholar
  17. Edwards, E., and Bridson, R. 2012. A high-order accurate particle-in-cell method. International Journal for Numerical Methods in Engineering 90, 9, 1073--1088.Google ScholarGoogle ScholarCross RefCross Ref
  18. Eggers, J. 2011. The subtle dynamics of liquid sheets. Journal of Fluid Mechanics 672, 1.Google ScholarGoogle ScholarCross RefCross Ref
  19. English, R. E., Qiu, L., Yu, Y., and Fedkiw, R. 2013. Chimera grids for water simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '13, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. Journal of Computational Physics 183, 1, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5, 471--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Karniadakis, G. E., and Sherwin, S. J. 1999. Spectral/hp element methods for CFD. Oxford University Press.Google ScholarGoogle Scholar
  24. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2009. Flexible simulation of deformable models using Discontinuous Galerkin FEM. Graphical Models 71, 4, 153--167. Special Issue of ACM SIGGRAPH / Eurographics Symp. Comp. Anim. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Misztal, M., and Bærentzen, J. 2012. Topology adaptive interface tracking using the deformable simplicial complex. ACM Transactions on Graphics 31, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Misztal, M., Bridson, R., Erleben, K., Bærentzen, J., and Anton, F. 2010. Optimization-based fluid simulation on unstructured meshes. In Proceedings of the 7th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS 2010), SIGGRAPH.Google ScholarGoogle Scholar
  28. Misztal, M., Erleben, K., Bargteil, A., Fursund, J., Christensen, B., Bærentzen, J., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation, The Eurographics Association, 97--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Moresi, L., Dufour, F., and Mhlhaus, H.-B. 2003. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of Computational Physics 184, 2, 476--497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Müller, M. 2009. Fast and robust tracking of fluid surfaces. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '09, 237--245. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Osher, S., and Fedkiw, R. 2003. Level set methods and dynamic implicit surfaces, vol. 153. Springer.Google ScholarGoogle Scholar
  32. Qin, R., and Krivodonova, L. 2012. A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries. Journal of Computational Science.Google ScholarGoogle Scholar
  33. Schwab, C. 1998. p-and hp-finite element methods: Theory and applications in solid and fluid mechanics. Clarendon Press Oxford.Google ScholarGoogle Scholar
  34. Solenthaler, B., and Gross, M. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4 (July), 81:1--81:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. In ACM SIGGRAPH 2010 Papers, ACM, New York, NY, USA, SIGGRAPH '10, SIGGRAPH, 48:1--48:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In ACM Transactions on Graphics (TOG), vol. 28, ACM, 76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29, 4, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses, ACM, New York, NY, USA, SIGGRAPH '11, ACM, 8:1--8:84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In ACM SIGGRAPH 2005 Papers, ACM, SIGGRAPH, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Detailed water with coarse grids: combining surface meshes and adaptive discontinuous Galerkin

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 33, Issue 4
          July 2014
          1366 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2601097
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 July 2014
          Published in tog Volume 33, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader