skip to main content
10.1145/2616498.2616509acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Detailed computational modeling of laminar and turbulent sooting flames

Published: 13 July 2014 Publication History

Abstract

This study reports development and validation of two parallel flame solvers with soot models based on the open-source computation fluid dynamics (CFD) toolbox code OpenFOAM. First, a laminar flame solver is developed and validated against experimental data. A semi-empirical two-equation soot model and a detailed soot model using a method of moments with interpolative closure (MOMIC) are implemented in the laminar flame solver. An optically thin radiation model including gray soot radiation is also implemented. Preliminary results using these models show good agreement with experimental data for the laminar axisymmetric diffusion flame studied. Second, a turbulent flame solver is developed using Reynolds-averaged equations and transported probability density function (tPDF) method. The MOMIC soot model is implemented on this turbulent solver. A sophisticated photon Monte-Carlo (PMC) model with line-by-line spectral radiation database for modeling is also implemented on the turbulent solver. The validation of the turbulent solver is under progress. Both the solvers show good scalability for a moderate-sized chemical mechanism, and can be expected to scale even more strongly when larger chemical mechanisms are used.

References

[1]
OpenFOAM. www.openfoam.com, 2010.
[2]
J. Appel, H. Bockhorn, and M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics: Laminar premixed flames of C2 hydrocarbons. Combust. Flame, 121:122--136, 2000.
[3]
R. S. Barlow, A. N. Karpetis, J. H. Frank, and J. Y. Chen. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 127:2102--2118, 2001.
[4]
H. Bockhorn. Soot Formation in Combustion: Mechanisms and Models. Springer-Verlag, New York, 1994.
[5]
H. Bockhorn, A. D'Anna, A. F. Sarofim, and H. Wang. Combustion Generated Fine Carbonaceous Particles. KIT Scientific Publishing, Karlsruhe, 2009.
[6]
T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, S. Kinne, Y. Kondo, P. K. Quinn, M. C. Sarofim, M. Schultz, M. G. Schulz, C. Venkataraman, H. Zhang, S. Zhang, N. Bellouin, S. K. Guttikunda, P. K. Hopke, M. Z. Jacobson, J. W. Kaiser, J. Klimont, U. Lohmann, J. P. Schwarz, D. Shindell, T. Storelvmo, S. G. Warren, and C. S. Zender. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118:1--173, 2013.
[7]
D. C. Cohen and A. C. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c. In SciCADE95: scientific computing and differential equations, 1995.
[8]
M. Frenklach. Method of moments with interpolative closure. Chemical Engineering Science, 57:2229--2239, 2002.
[9]
M. Frenklach and H. Wang. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame, 110:173--221, 1997.
[10]
H. Guo, F. Liu, and G. J. Smallwood. Soot and no formation in counterflow ethylene/oxygen/nitrogen diffusion flames. Combustion Theory and Modeling, 8:475--489, 2004.
[11]
D. C. Haworth. Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci., 36:168--259, 2010.
[12]
B. S. Haynes and H. G. Wagner. Soot formation. Prog. Energy Combust. Sci., 7:229--273, 1981.
[13]
A. C. Hindmarsh and R. Serban. User documentation for cvode v 2.7.0. Technical report, Lawrence Livermore National Laboratory, 2012.
[14]
A. E. Karataş and Ö. L. Gülder. Soot formation in high pressure laminar diffusion flames. Prog. Energy Combust. Sci., 38:818--845, 2012.
[15]
R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller. A fortran computer code package for the evaluation of gas phase multicomponent transport properties. Sand86-8246 unlimited release, Sandia National Laboratory, 1986.
[16]
I. M. Kennedy. Models of soot formation and oxidation. Prog. Energy Combust. Sci., 23:95--132, 1997.
[17]
I. M. Kennedy, C. Yam, D. C. Rapp, and R. J. Santoro. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame, 107:368--382, 1996.
[18]
C. K. Law. Comprehensive description of chemistry in combustion modeling. Combustion Science and Technology, 177:845--870, 2005.
[19]
S. Y. Lee, S. R. Turns, and R. J. Santoro. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames. Combust. Flame, 156:2264--2275, 2009.
[20]
S. Lei, J. Cai, M. F. Modest, A. Dasgupta, and D. C. Haworth. Photon Monte Carlo model for high-pressure reacting laminar flows. In Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition, 2012.
[21]
K. M. Leung, R. P. Lindstedt, and W. P. Jones. A simplified reaction mechanism for soot formation in non premixed flames. Combustion and Flame, 87:289--305, 1991.
[22]
Z. Luo, C. S. Yoo, E. S. Richardson, J. H. Chen, C. K. Law, and T. F. Lu. Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combustion and Flame, 159:265--274, 2011.
[23]
MECHMOD. http://garfield.chem.elte.hu/Combustion/mechmod.htm, 2010.
[24]
R. S. Mehta. Detailed Modeling of Soot Formation and Turbulence -- Radiation Interactions in Turbulent Jet Flames. Ph.d. diss., The Pennsylvania State University, University Park, PA, USA, 2008.
[25]
R. S. Mehta, D. C. Haworth, and M. F. Modest. An assessment of gas-phase reaction mechanisms and soot models for laminar atmospheric-pressure ethylene-air flames. Proc. Combust. Inst., 32:1327--1337, 2009.
[26]
R. S. Mehta, D. C. Haworth, and M. F. Modest. Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames. Combust. Flame, 157:982--994, 2010.
[27]
R. S. Mehta, M. F. Modest, and D. C. Haworth. Radiation characteristics and turbulence-radiation interaction in sooting turbulent jet flames. Combust. Theory Modell., 14:105--124, 2010.
[28]
G. Pal. Spectral Modeling of Radiation in Combustion Systems. Ph.d. diss., The Pennsylvania State University, University Park, PA, USA, 2010.
[29]
Z. Qin, V. V. Lissianski, H. Yang, W. C. Gardiner, S. G. Davis, and H. Wang. Combustion chemistry of propane: A case study of detailed reaction mechanism optimization. In Proceedings of the Combustion Institute, volume 28, pages 1663--1669, 2000.
[30]
T. Ren and M. Modest. A hybrid wavenumber selection scheme for line-by-line photon Monte Carlo simulations in high-temperature gases. J. Heat Transfer, 135:084501(1) -- 084501(4), 2013.
[31]
H. Richter and J. Howard. Formation of polycyclic aromatic hydrocarbons and their growth to soot -- a review of chemical reaction pathways. Prog. Energy Combust. Sci., 26:565--608, 2000.
[32]
S. P. Roy, P. G. Arias, V. Lecoustre, H. G. Im, D. C. Haworth, and A. Trouvé. Development of high fidelity soot aerosol dynamics models using method of moments with interpolative closure. Aerosol Sci. Technol., 48:379--391, 2014.
[33]
S. P. Roy and D. C. Haworth. Comparisons of section- and moment-based soot aerosol dynamics models for laminar premixed ethylene flames. Combust. Theory Model. Under review.
[34]
R. J. Santoro, H. G. Semerjian, and R. A. Dobbins. Soot particle measurements in diffusion flames. Combustion and Flame, 51:203--218, 1983.
[35]
U.S. EPA. Integrated science assessment for particulate matter (final report). Technical Report EPA/600/R-08/139F, U. S. Environment Protection Agency, Washington, DC, 2009.
[36]
H. Wang. Formation of nascent soot and other condensed-phase materials in flames. Proc. Comb. Inst., 33:41--67, 2011.
[37]
H. Wang, D. X. Du, C. J. Sung, and C. K. Law. Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. In Twenty-Sixth Symposium on Combustion/The Combustion Institute, pages 2359--2368, 1996.
[38]
H. Wang and A. Laskin. A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures. Technical report, AFOSR, 1991.
[39]
X. Y. Zhao, D. C. Haworth, and E. D. Huckaby. Transported pdf modeling of nonpremixed turbulent co/H2/N2 jet flames. Combustion Science and Technology, 184:676--693, 2012.

Cited By

View all
  • (2024)Computational assessment of soot models in ethylene/air laminar diffusion flamesCombustion Theory and Modelling10.1080/13647830.2024.236570428:6(623-648)Online publication date: 11-Jun-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
July 2014
445 pages
ISBN:9781450328937
DOI:10.1145/2616498
  • General Chair:
  • Scott Lathrop,
  • Program Chair:
  • Jay Alameda
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

In-Cooperation

  • NSF: National Science Foundation
  • Drexel University
  • Indiana University: Indiana University

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. laminar flames
  2. scaling
  3. soot modeling
  4. turbulent flames

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

XSEDE '14

Acceptance Rates

XSEDE '14 Paper Acceptance Rate 80 of 120 submissions, 67%;
Overall Acceptance Rate 129 of 190 submissions, 68%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Computational assessment of soot models in ethylene/air laminar diffusion flamesCombustion Theory and Modelling10.1080/13647830.2024.236570428:6(623-648)Online publication date: 11-Jun-2024

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media