skip to main content
10.1145/2616498.2616514acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Highly Energetic Collisions of Xe with Fullerene Clusters

Published: 13 July 2014 Publication History

Abstract

One subset of the fullerene activities is collision experiments using high energetic inert gases with fullerene clusters. We report on the formation of fullerene oligomers upto (C60)m, m=2-12 following the collisions of 200 keV and 400 keV Xe with (C60)55 fullerene clusters using classical reactive dynamics. A preference for C60+n (n=1-4) fragments was observed after the collision. The sequence of peaks detected in the range C105 - C122 after 1 ns from the collision is comparable with the experimental results. According to the post collisional dynamics, a dimer formed with one cross-link between two fullerenes led to a peanut shaped molecule after 25 ns and a linear trimer has turned into a carbon nanotube like structure after 43 ns. At the ns time scale, more organized carbon molecules as well as big amorphous carbon chunks also remained as collisional products.

References

[1]
G. Adams, M. O'Keeffe, and R. Ruoff. Van der waals surface areas and volumes of fullerenes. J. Phys. Chem., 98:9465--9469, 1994.
[2]
M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford University Press, London, 1987.
[3]
L. Becker, R. Poreda, and T. Bunch. Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proc. Nat. Acad. Sci. USA, 97(7):2979--2983, 2000.
[4]
H. Cederquist, N. Haag, Z. Berenyi, P. Reinhed, D. Fischer, M. Gudmundsson, H. A. B. Johansson, H. T. Schmidt, and H. Zettergren. Kinetic energy release distributions for C2+ emission from multiply charged C60 and C70 fullerenes. Journal of Physics: Conference Series, 163, 2009.
[5]
H. Cederquist, J. Jensen, H. Schmidt, H. Zettergren, S. Tomita, B. Huber, and B. Manil. Barriers for asymmetric fission of multiply charged C60 fullerenes. Phys. Rev. A, 67(6):062719, 2003.
[6]
S. Cheng, H. G. Berry, R. W. Dunford, H. Esbensen, D. S. Gemmell, E. P. Kanter, T. LeBrun, and W. Bauer. Ionization and fragmentation of C60 by highly charged, high-energy Xenon ions. Phys. Rev. A, 54:3182--3194, 1996.
[7]
A. Glotov, O. Knospe, R. Schmidt, and E. Campbell. Molecular fusion of fullerenes. Eur. Phys. J. D., 16:333--336, 2001.
[8]
N. Haag, Z. Berenyi, P. Reinhed, D. Fischer, M. Gudmundsson, H. A. B. Johansson, H. T. Schmidt, H. Cederquist, and H. Zettergren. Kinetic-energy-release distributions and barrier heights for C2+ emission from multiply charged C60 and C70 fullerenes. Phys. Rev. A, 78(4):043201, 2008.
[9]
S. Irle, G. Zheng, Z. Wang, and K. Morokuma. The C60 formation puzzle "solved": QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Phys. Chem. B, 110(30):14531--14545, 2006.
[10]
J. Jakowski, S. Irle, and K. Morokuma. Collision-induced fusion of two C60 fullerenes: Quantum chemical molecular dynamics simulations. Phys. Rev. B, 82:125443, 2010.
[11]
M. Johnson, J. Donnet, T. Wang, C. Wang, R. Locke, B. Brinson, and T. Marriott. A dynamic continuum of nanostructured carbons in the combustion furnace. Carbon, 40(2):189--194, 2002.
[12]
O. Kamalou, B. Manil, H. Lebius, J. Rangama, B. Huber, P. Hvelplund, S. Tomita, J. Jensen, H. Schmidt, H. Zettergren, and H. Cederquist. Fullerene collisions and clusters of fullerenes. Int. J. Mass spectrom., 252(2):117--125, 2006.
[13]
D. S. Klaus. Handbook of nanophysics: Nanomedicine and nanorobotics. CRC Press, 2010.
[14]
H. Kroto, J. Heath, S. O'Brien, R. Curl, and R. Smalley. C60: Buckminsterfullerene. Nature, 314:162--163, 1985.
[15]
S. Lijima. Helical microtubules of graphite carbon. Nature, 354:56--58, 1991.
[16]
S. Martin, L. Chen, A. Salmoun, B. Li, J. Bernard, and R. Brédy. Fragmentation patterns of multicharged C60r+ (r = 3--5) studied with well-controlled internal excitation energy. Phys. Rev. A, 77(10):043201, 2008.
[17]
T. Martin, U. Naher, H. Schaber, and U. Zimmermann. Clusters of fullerene molecules. Phys. Rev. Lett., 70(20):3079--3082, 1993.
[18]
A. J. Page, Y. Ohta, S. Irle, and K. Morokuma. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods. Acc. Chem. Res., 43(10):1375--1385, 2010.
[19]
F. Seitz, H. Zettergren, P. Rousseau, Y. Wang, T. Chen, M. Gatchell, J. D. Alexander, M. H. Stockett, J. Rangama, J. Y. Chesnel, M. Capron, J. C. Poully, A. Domaracka, A. Mery, S. Maclot, V. Vizcaino, H. T. Schmidt, L. Adoui, M. Alcami, A. G. G. M. Tielens, F. Martin, B. A. Huber, and H. Cederquist. Ions colliding with clusters of fullerenes-decay pathways and covalent bond formations. J. Chem. Phys., 139(3):034309, 2013.
[20]
R. Sen, R. Sumathy, B. Satishkumar, and C. Rao. Investigations of diamond-graphite hybrids and fullerenes with seven-membered rings. J. Mol. Struc., 437(0):11--18, 1997.
[21]
S. Stuart, J. Hicks, and M. Mury. An iterative variable-timestep algorithem for molecular dynamics simulations. Mol. Sim., 29:177--188, 2003.
[22]
S. Stuart, A. Tutein, and J. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 12:6472, 2000.
[23]
S. Tomita, J. U. Andersen, C. Gottrup, P. Hvelplund, and U. V. Pedersen. Dissociation energy for C2 loss from fullerene cations in a storage ring. Phys. Rev. Lett., 87:073401--1,073401--4, 2001.
[24]
C. Yeretzian, K. Hansen, F. Diederichi, and R. Whetten. Coalescence reactions of fullerenes. Nature, 359:44--47, 1992.
[25]
H. Zettergren, H. Johansson, H. Schmidt, P. H. T. Jensen, S. Tomita, Y. Wang, F. Martin, M. Alcami, B. Manil, L. Maunoury, B. A. Huber, and H. Cederquist. Magic and hot giant fullerenes formed inside ion irradiated weakly bound C60 clusters. J. Chem. Phys., 133(10):104304, 2010.
[26]
H. Zettergren, P. Rousseau, Y. Wang, F. Seitz, T. Chen, T. M. Gatchell, J. Alexander, M. Stockett, J. R. J. Chesnel, M. Capron, J. Poully, A. Domaracka, A. Mery, S. Maclot, H. Schmidt, L. Adoui, M. Alcami, A. Tielens, F. Martin, B. Huber, and H. Cederquist. Formations of dumbbell C118 and C119 inside clusters of C60 molecules by collision with alpha particles. Phys. Rev. Lett., 110(18):185501, 2013.
[27]
H. Zettergren, H. Schmidt, P. Reinhed, J. J. H. Cederquist, P. Hvelplund, S. Tomita, B. Manil, J. Rangama, and B. Huber. Even-odd effects in the ionization cross sections of (C60)2 and C60C70 dimers. Phys. Rev. A, 75(5):051201, 2007.
[28]
H. Zettergren, H. T. Schmidt, P. Reinhed, H. Cederquist, J. Jesen, P. Hvelplund, S. Tomita, B. Manil, J. Rangama, and B. A. Huber. Stabilities of multiply charged dimers and clusters of fullerenes. J. Chem. Phys., 126(22):224303, 2007.
[29]
H. Zettergren, Y. Wang, A. Lamsabhi, M. Alcami, and F. Martin. Density functional theory study of multiply ionized weakly bound fullerene dimers. J. Chem. Phys., 130(22):224301, 2009.
[30]
G. Zheng, S. Irle, and K. Morokuma. Towards formation of buckminsterfullerene C60 in quantum chemical molecular dynamics. J. Chem. Phys., 122(1):014708, 2005.

Index Terms

  1. Highly Energetic Collisions of Xe with Fullerene Clusters

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
      July 2014
      445 pages
      ISBN:9781450328937
      DOI:10.1145/2616498
      • General Chair:
      • Scott Lathrop,
      • Program Chair:
      • Jay Alameda
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      In-Cooperation

      • NSF: National Science Foundation
      • Drexel University
      • Indiana University: Indiana University

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 13 July 2014

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Carbon Nanostructures
      2. Collisions
      3. Experimental
      4. Fullerene Clusters
      5. Molecular Dynamics

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      XSEDE '14

      Acceptance Rates

      XSEDE '14 Paper Acceptance Rate 80 of 120 submissions, 67%;
      Overall Acceptance Rate 129 of 190 submissions, 68%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 58
        Total Downloads
      • Downloads (Last 12 months)2
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 01 Mar 2025

      Other Metrics

      Citations

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media