skip to main content
10.1145/2616498.2616514acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Highly Energetic Collisions of Xe with Fullerene Clusters

Authors Info & Claims
Published:13 July 2014Publication History

ABSTRACT

One subset of the fullerene activities is collision experiments using high energetic inert gases with fullerene clusters. We report on the formation of fullerene oligomers upto (C60)m, m=2-12 following the collisions of 200 keV and 400 keV Xe with (C60)55 fullerene clusters using classical reactive dynamics. A preference for C60+n (n=1-4) fragments was observed after the collision. The sequence of peaks detected in the range C105 - C122 after 1 ns from the collision is comparable with the experimental results. According to the post collisional dynamics, a dimer formed with one cross-link between two fullerenes led to a peanut shaped molecule after 25 ns and a linear trimer has turned into a carbon nanotube like structure after 43 ns. At the ns time scale, more organized carbon molecules as well as big amorphous carbon chunks also remained as collisional products.

References

  1. G. Adams, M. O'Keeffe, and R. Ruoff. Van der waals surface areas and volumes of fullerenes. J. Phys. Chem., 98:9465--9469, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  2. M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Oxford University Press, London, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. L. Becker, R. Poreda, and T. Bunch. Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proc. Nat. Acad. Sci. USA, 97(7):2979--2983, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  4. H. Cederquist, N. Haag, Z. Berenyi, P. Reinhed, D. Fischer, M. Gudmundsson, H. A. B. Johansson, H. T. Schmidt, and H. Zettergren. Kinetic energy release distributions for C2+ emission from multiply charged C60 and C70 fullerenes. Journal of Physics: Conference Series, 163, 2009.Google ScholarGoogle Scholar
  5. H. Cederquist, J. Jensen, H. Schmidt, H. Zettergren, S. Tomita, B. Huber, and B. Manil. Barriers for asymmetric fission of multiply charged C60 fullerenes. Phys. Rev. A, 67(6):062719, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  6. S. Cheng, H. G. Berry, R. W. Dunford, H. Esbensen, D. S. Gemmell, E. P. Kanter, T. LeBrun, and W. Bauer. Ionization and fragmentation of C60 by highly charged, high-energy Xenon ions. Phys. Rev. A, 54:3182--3194, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Glotov, O. Knospe, R. Schmidt, and E. Campbell. Molecular fusion of fullerenes. Eur. Phys. J. D., 16:333--336, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  8. N. Haag, Z. Berenyi, P. Reinhed, D. Fischer, M. Gudmundsson, H. A. B. Johansson, H. T. Schmidt, H. Cederquist, and H. Zettergren. Kinetic-energy-release distributions and barrier heights for C2+ emission from multiply charged C60 and C70 fullerenes. Phys. Rev. A, 78(4):043201, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Irle, G. Zheng, Z. Wang, and K. Morokuma. The C60 formation puzzle "solved": QM/MD simulations reveal the shrinking hot giant road of the dynamic fullerene self-assembly mechanism. J. Phys. Chem. B, 110(30):14531--14545, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  10. J. Jakowski, S. Irle, and K. Morokuma. Collision-induced fusion of two C60 fullerenes: Quantum chemical molecular dynamics simulations. Phys. Rev. B, 82:125443, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. Johnson, J. Donnet, T. Wang, C. Wang, R. Locke, B. Brinson, and T. Marriott. A dynamic continuum of nanostructured carbons in the combustion furnace. Carbon, 40(2):189--194, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  12. O. Kamalou, B. Manil, H. Lebius, J. Rangama, B. Huber, P. Hvelplund, S. Tomita, J. Jensen, H. Schmidt, H. Zettergren, and H. Cederquist. Fullerene collisions and clusters of fullerenes. Int. J. Mass spectrom., 252(2):117--125, 2006.Google ScholarGoogle Scholar
  13. D. S. Klaus. Handbook of nanophysics: Nanomedicine and nanorobotics. CRC Press, 2010.Google ScholarGoogle Scholar
  14. H. Kroto, J. Heath, S. O'Brien, R. Curl, and R. Smalley. C60: Buckminsterfullerene. Nature, 314:162--163, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  15. S. Lijima. Helical microtubules of graphite carbon. Nature, 354:56--58, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Martin, L. Chen, A. Salmoun, B. Li, J. Bernard, and R. Brédy. Fragmentation patterns of multicharged C60r+ (r = 3--5) studied with well-controlled internal excitation energy. Phys. Rev. A, 77(10):043201, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  17. T. Martin, U. Naher, H. Schaber, and U. Zimmermann. Clusters of fullerene molecules. Phys. Rev. Lett., 70(20):3079--3082, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  18. A. J. Page, Y. Ohta, S. Irle, and K. Morokuma. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods. Acc. Chem. Res., 43(10):1375--1385, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  19. F. Seitz, H. Zettergren, P. Rousseau, Y. Wang, T. Chen, M. Gatchell, J. D. Alexander, M. H. Stockett, J. Rangama, J. Y. Chesnel, M. Capron, J. C. Poully, A. Domaracka, A. Mery, S. Maclot, V. Vizcaino, H. T. Schmidt, L. Adoui, M. Alcami, A. G. G. M. Tielens, F. Martin, B. A. Huber, and H. Cederquist. Ions colliding with clusters of fullerenes-decay pathways and covalent bond formations. J. Chem. Phys., 139(3):034309, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. R. Sen, R. Sumathy, B. Satishkumar, and C. Rao. Investigations of diamond-graphite hybrids and fullerenes with seven-membered rings. J. Mol. Struc., 437(0):11--18, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  21. S. Stuart, J. Hicks, and M. Mury. An iterative variable-timestep algorithem for molecular dynamics simulations. Mol. Sim., 29:177--188, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  22. S. Stuart, A. Tutein, and J. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 12:6472, 2000.Google ScholarGoogle ScholarCross RefCross Ref
  23. S. Tomita, J. U. Andersen, C. Gottrup, P. Hvelplund, and U. V. Pedersen. Dissociation energy for C2 loss from fullerene cations in a storage ring. Phys. Rev. Lett., 87:073401--1,073401--4, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  24. C. Yeretzian, K. Hansen, F. Diederichi, and R. Whetten. Coalescence reactions of fullerenes. Nature, 359:44--47, 1992.Google ScholarGoogle ScholarCross RefCross Ref
  25. H. Zettergren, H. Johansson, H. Schmidt, P. H. T. Jensen, S. Tomita, Y. Wang, F. Martin, M. Alcami, B. Manil, L. Maunoury, B. A. Huber, and H. Cederquist. Magic and hot giant fullerenes formed inside ion irradiated weakly bound C60 clusters. J. Chem. Phys., 133(10):104304, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. Zettergren, P. Rousseau, Y. Wang, F. Seitz, T. Chen, T. M. Gatchell, J. Alexander, M. Stockett, J. R. J. Chesnel, M. Capron, J. Poully, A. Domaracka, A. Mery, S. Maclot, H. Schmidt, L. Adoui, M. Alcami, A. Tielens, F. Martin, B. Huber, and H. Cederquist. Formations of dumbbell C118 and C119 inside clusters of C60 molecules by collision with alpha particles. Phys. Rev. Lett., 110(18):185501, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  27. H. Zettergren, H. Schmidt, P. Reinhed, J. J. H. Cederquist, P. Hvelplund, S. Tomita, B. Manil, J. Rangama, and B. Huber. Even-odd effects in the ionization cross sections of (C60)2 and C60C70 dimers. Phys. Rev. A, 75(5):051201, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  28. H. Zettergren, H. T. Schmidt, P. Reinhed, H. Cederquist, J. Jesen, P. Hvelplund, S. Tomita, B. Manil, J. Rangama, and B. A. Huber. Stabilities of multiply charged dimers and clusters of fullerenes. J. Chem. Phys., 126(22):224303, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  29. H. Zettergren, Y. Wang, A. Lamsabhi, M. Alcami, and F. Martin. Density functional theory study of multiply ionized weakly bound fullerene dimers. J. Chem. Phys., 130(22):224301, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  30. G. Zheng, S. Irle, and K. Morokuma. Towards formation of buckminsterfullerene C60 in quantum chemical molecular dynamics. J. Chem. Phys., 122(1):014708, 2005.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Highly Energetic Collisions of Xe with Fullerene Clusters

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
        July 2014
        445 pages
        ISBN:9781450328937
        DOI:10.1145/2616498
        • General Chair:
        • Scott Lathrop,
        • Program Chair:
        • Jay Alameda

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        XSEDE '14 Paper Acceptance Rate80of120submissions,67%Overall Acceptance Rate129of190submissions,68%
      • Article Metrics

        • Downloads (Last 12 months)1
        • Downloads (Last 6 weeks)0

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader