skip to main content
10.1145/2616498.2616527acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

ECSS Experience: Particle Tracing Reinvented

Published: 13 July 2014 Publication History

Abstract

This work describes an implementation of distributed particle tracking that provides a factor 10000x speedup over traditional schemes. While none of the techniques used to achieve this result are completely new, they have been used in combination to great effect in this project. The implementation includes parallel IO using HDF5, a flexible load balancing scheme, and dynamic buffering to achieve excellent performance at scale. The use of HDF5 decouples the size of the simulation generating the data from the particle tracing, providing a more flexible and efficient workflow. The load balancing scheme ensures that heterogeneous particle distributions do not result in a waste of computational resources by maintaining all the MPI tasks occupied at any given time. Dynamic buffering minimizes MPI exchanges across MPI tasks, a critical element in the performance improvements achieved.

References

[1]
T. Peterka, R. Ross, B. Nouanesengsy, T-Y. Lee, H-W. Shen, W. Kendall and J. Huang, A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS 2011, Anchorage, AL, USA
[2]
XSEDE Extended Collaborative Support Services, https://www.xsede.org/web/guest/ecss
[3]
S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University Press, 2001

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
July 2014
445 pages
ISBN:9781450328937
DOI:10.1145/2616498
  • General Chair:
  • Scott Lathrop,
  • Program Chair:
  • Jay Alameda
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

In-Cooperation

  • NSF: National Science Foundation
  • Drexel University
  • Indiana University: Indiana University

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 July 2014

Check for updates

Author Tags

  1. Particle tracing
  2. hdf5
  3. load balance

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

XSEDE '14

Acceptance Rates

XSEDE '14 Paper Acceptance Rate 80 of 120 submissions, 67%;
Overall Acceptance Rate 129 of 190 submissions, 68%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 33
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Mar 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media