skip to main content
10.1145/2616498.2616540acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science

Authors Info & Claims
Published:13 July 2014Publication History

ABSTRACT

NSF-funded computing centers have primarily focused on delivering high-performance computing resources to academic researchers with the most computationally demanding applications. But now that computational science is so pervasive, there is a need for infrastructure that can serve more researchers and disciplines than just those at the peak of the HPC pyramid. Here we describe SDSC's Comet system, which is scheduled for production in January 2015 and was designed to address the needs of a much larger and more expansive science community-- the "long tail of science". Comet will have a peak performance of 2 petaflop/s, mostly delivered using Intel's next generation Xeon processor. It will include some large-memory and GPU-accelerated nodes, node-local flash memory, 7 PB of Performance Storage, and 6 PB of Durable Storage. These features, together with the availability of high performance virtualization, will enable users to run complex, heterogeneous workloads on a single integrated resource.

References

  1. NSB 93-205 -- NSF Blue Ribbon Panel on High Performance Computing. NSF, Arlington, VA, 1993.Google ScholarGoogle Scholar
  2. NSF Advisory Committee for Cyberinfrastructure Task Force on Campus Bridging. Final Report. NSF, Arlington, VA, March 2011.Google ScholarGoogle Scholar
  3. Cyberinfrastructure Framework for 21st Century Science and Engineering: Vision. NSF, Arlington, VA, May 2012.Google ScholarGoogle Scholar
  4. Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730Google ScholarGoogle Scholar
  5. ACCI Task Force reports, available at http://www.nsf.gov/od/oci/taskforces/, NSF, Arlington, VA.Google ScholarGoogle Scholar
  6. Stewart, C. A., Katz, D. S., Hart, D. L., Lantrip, D., McCaulay, D. S. and Moore, R. L. Survey of Cyberinfrastructure Needs and Interests of NSF-funded Principal Investigators. Indiana University, Bloomington, IN, January 2011.Google ScholarGoogle Scholar
  7. Katz, D. S., Keahey, K. and Jul, S. TeraGrid eXtreme Digital 'Wide Users' Requirements Elicitation Meeting, Computation Institute Technical Report CI-TR-10-0811. University of Chicago and Argonne National Laboratory, 2011.Google ScholarGoogle Scholar
  8. XDMoD - XSEDE Metrics on Demand, NSF award OCI-1025159.Google ScholarGoogle Scholar
  9. Moore, R. L., Jundt, A., Carson, L. K., Yoshimoto, K., Ghadersohi, A. and Young, W. S. Analyzing throughput and utilization on Trestles, Proceedings of XSEDE12. ACM, (Chicago, IL, 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Furlani, T. R., Schneider, B. I., Jones, M. D., Towns, J., Hart, D. L., Patra, A. K., DeLeon, R. L., Gallo, S. M., Lu, C.-D. and Ghadersohi, A. Data analytics driven cyberinfrastructure operations, planning and analysis using XDMoD, SC12 Conference, Salt Lake City, UT, 2012.Google ScholarGoogle Scholar
  11. Hart, D. Deep and wide metrics for HPC resource capability and project usage, Supercomputing '11, November 2011, Seattle, WA, USA. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Schneider, B. A Data History of TeraGrid/XSEDE Usage: Defining a Strategy for Advanced CyberInfrastructure (ACI), April 2012.Google ScholarGoogle Scholar
  13. FutureGrid, https://portal.futuregrid.org/.Google ScholarGoogle Scholar
  14. SLURM: Simple linux utility for resource management.Google ScholarGoogle Scholar
  15. Yoo, A. B., Jette, M. A. and Grondona, M. SLURM: Simple linux utility for resource management. Springer, City, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  16. Boyd, E., Newman, H., McKee, S. and Sheldon, P. MRI-R2 Consortium: Development of Dynamic Network System (DYNES), NSF ACI award 0958998, 2010.Google ScholarGoogle Scholar
  17. Cortese, J. New Dynamic Circuit Provisioning Available on Pacific Wave, http://pacificwave.net/p=433/, November 26, 2012.Google ScholarGoogle Scholar
  18. 2012 Annual HPCwire Readers' Choice Awards, November 2012,http://www.hpcwire.com/specialfeatures/2012_Annual_HPCwire_Readers_Choice_Awards.html.Google ScholarGoogle Scholar
  19. Jorissen, K., Vila, F. D. and Rehr, J. J. A high performance scientific cloud computing environment for materials simulations. Computer Physics Communications, 183, (9) 2012, 1911--1919.Google ScholarGoogle ScholarCross RefCross Ref
  20. Rehr, J. SI2-SSE: Cloud-Computing-Clusters for Scientific Research, NSF ACI award 1048052. NSF, 2010.Google ScholarGoogle Scholar
  21. Rehr, J. J., Vila, F. D., Gardner, J. P., Svec, L. and Prange, M. Scientific computing in the cloud. Computing in Science & Engineering, 12, (3) 2010, 34--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Yelick, K., Coghlan, S., Draney, B. and Cannon, R. S. The Magellan Report on Cloud Computing for Science, U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research. December 2011.Google ScholarGoogle Scholar
  23. Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H. J. and Wright, N. J. Performance analysis of high performance computing applications on the amazon web services cloud. IEEE 2nd International Conference on Cloud Computing Technology and Science (CloudCom), 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Mehrotra, P., Djomehri, J., Heistand, S., Hood, R., Jin, H., Lazanoff, A., Saini, S. and Biswas, R. Performance evaluation of Amazon EC2 for NASA HPC applications. Proceedings of the 3rd workshop on Scientific Cloud Computing, ACM, (Delft, The Netherlands, June 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Overview of Single Root I/O Virtualization (SR-IOV), http://msdn.microsoft.com/enus/library/windows/hardware/hh440148%28v=vs.85%29.aspx.Google ScholarGoogle Scholar
  26. Lockwood, G. K., Tatineni, M. and Wagner, R. P. SR-IOV: Performance Benefits for Virtualized Interconnects, Proceedings of XSEDE14, ACM (Atlanta, GA, July 2014). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Neuroscience Gateway Portal, http://www.nsgportal.org.Google ScholarGoogle Scholar
  28. Wagner, R., Tatineni, M., Hocks, E., Yoshimoto, K., Sakai, S., Norman, M. L., Bockelman, B., Sfiligoi, I., Tadel, M. and Letts, J. Using Gordon to accelerate LHC science. Proceedings of XSEDE13, ACM, (San Diego, CA, July, 2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Gaussian, http://www.gaussian.comGoogle ScholarGoogle Scholar
  30. Kong, J., White, C. A., Krylov, A. I., Sherrill, D., Adamson, R. D., Furlani, T. R., Lee, M. S., Lee, A. M., Gwaltney, S. R. and Adams, T. R. Q-Chem 2.0: a high-performance ab initio electronic structure program package. Journal of Computational Chemistry, 21, (16) 2000, 1532--1548.Google ScholarGoogle Scholar
  31. Hibbitt, Karlsson and Sorensen ABAQUS/Standard user's manual. Hibbitt, Karlsson & Sorensen, 2001.Google ScholarGoogle Scholar
  32. Clean Energy Project, https://cleanenergy.harvard.edu.Google ScholarGoogle Scholar
  33. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q. and Liu, Y. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience, 1, (1) 2012, 18.Google ScholarGoogle ScholarCross RefCross Ref
  34. Zerbino, D. R. and Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research, 18, (5) 2008, 821--829.Google ScholarGoogle Scholar
  35. Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S. and Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. Journal of chemical theory and computation, 8, (5) 2012, 1542--1555.Google ScholarGoogle Scholar
  36. Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. and Walker, R. C. Routine microsecond molecular dynamics simulations with Amber on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9, (9) 2013, 3878--3888.Google ScholarGoogle ScholarCross RefCross Ref
  37. Brooks, B. R., Brooks, C. L., MacKerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C. and Boresch, S. CHARMM: the biomolecular simulation program. Journal of computational chemistry, 30, (10) 2009, 1545--1614.Google ScholarGoogle Scholar
  38. Hess, B., Kutzner, C., Van Der Spoel, D. and Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 4, (3) 2008, 435--447.Google ScholarGoogle Scholar
  39. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L. and Schulten, K. Scalable molecular dynamics with NAMD. Journal of computational chemistry, 26, (16) 2005, 1781--1802.Google ScholarGoogle Scholar
  40. AMBER (PMEMD) Benchmarks, http://ambermd.org/gpus/benchmarks.htm.Google ScholarGoogle Scholar
  41. CIPRES, http://www.phylo.org.Google ScholarGoogle Scholar
  42. Drummond, A. J. and Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology, 7, (1) 2007, 214.Google ScholarGoogle Scholar
  43. Huelsenbeck, J. P. and Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, (8) 2001, 754--755.Google ScholarGoogle ScholarCross RefCross Ref
  44. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, (21) 2006, 2688--2690. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. CyberGIS, http://cybergis.cigi.uiuc.edu.Google ScholarGoogle Scholar
  46. Behzad, B., Liu, Y., Shook, E., Finn, M. P., Mattli, D. M. and Wang, S. A Performance Profiling Strategy for High-Performance Map Re-Projection of Coarse-Scale Spatial Raster Data, In Auto-Carto 2012, a cartography and geographic information society research symposium, Columbus, OH, 2012.Google ScholarGoogle Scholar
  47. Tarboton, D. G. Terrain analysis using digital elevation models (TauDEM). Utah State University, Logan2005).Google ScholarGoogle Scholar
  48. Computational Chemistry Grid, http://www.gridchem.org.Google ScholarGoogle Scholar
  49. Bower, J. M. and Beeman, D. The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. The Electronic Library of Science, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Carnevale, N. T. and Hines, M. L. The NEURON book. Cambridge University Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. UltraScan Analysis Software, http://ultrascan.uthscsa.edu.Google ScholarGoogle Scholar
  52. Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S. and Pamidighantam, S. TeraGrid science gateways and their impact on science. Computer, 41, (11) 2008, 32--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Science Gateway Institute, http://sciencegateways.org.Google ScholarGoogle Scholar
  54. Miller, M. A., Pfeiffer, W. and Schwartz, T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources, Proceedings of XSEDE12, ACM, (Chicago, IL, 2012). Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Moore, R. L., Hart, D. L., Pfeiffer, W., Tatineni, M., Yoshimoto, K. and Young, W. S. Trestles: a high-productivity HPC system targeted to modest-scale and gateway users. Proceedings of TeraGrid 11, ACM, (Salt Lake City, UT, 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yoshimoto, K., Choi, D., Moore, R., Majumdar, A. and Hocks, E. Implementations of Urgent Computing on Production HPC Systems. Procedia Computer Science, (9) 2012, 1687--1693.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
        July 2014
        445 pages
        ISBN:9781450328937
        DOI:10.1145/2616498
        • General Chair:
        • Scott Lathrop,
        • Program Chair:
        • Jay Alameda

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 July 2014

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        XSEDE '14 Paper Acceptance Rate80of120submissions,67%Overall Acceptance Rate129of190submissions,68%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader