skip to main content

Algorithm 945: modred—A Parallelized Model Reduction Library

Published:08 July 2014Publication History
Skip Abstract Section

Abstract

We describe a new parallelized Python library for model reduction, modal analysis, and system identification of large systems and datasets. Our library, called modred, handles a wide range of problems and any data format.

The modred library contains implementations of the Proper Orthogonal Decomposition (POD), balanced POD (BPOD) Petrov-Galerkin projection, and a more efficient variant of the Dynamic Mode Decomposition (DMD). The library contains two implementations of these algorithms, each with its own advantages. One is for smaller and simpler datasets, requires minimal knowledge to use, and follows a common matrix-based formulation. The second, for larger and more complicated datasets, preserves the abstraction of vectors as elements of a vector space and, as a result, allows the library to work with arbitrary data formats and eases distributed memory parallelization. We also include implementations of the Eigensystem Realization Algorithm (ERA), and Observer/Kalman Filter Identification (OKID). These methods are typically not computationally demanding and are not parallelized. The library is designed to be easy to use, with an object-oriented design, and includes comprehensive automated tests. In almost all cases, parallelization is done internally so that scripts that use the parallelized classes can be run in serial or in parallel without any modifications.

Skip Supplemental Material Section

Supplemental Material

References

  1. S. Ahuja and C. W. Rowley. 2010. Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators. J. Fluid Mech. 645, 447--478.Google ScholarGoogle ScholarCross RefCross Ref
  2. N. Aubry, P. Holmes, J. L. Lumley, and E. Stone. 1988. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115--173.Google ScholarGoogle ScholarCross RefCross Ref
  3. M. F. A. Azeez and A. F. Vakakis. 2000. Proper orthogonal decomposition (POD) of a class of vibroimpact oscillations. J. Sound Vib. 240, 5, 859--889.Google ScholarGoogle ScholarCross RefCross Ref
  4. B. A. Belson, O. Semeraro, C. W. Rowley, and D. S. Henningson. 2013a. Feedback control of instabilities in the 2D Blasius boundary layer: The role of sensors and actuators. Phys. Fluids 25, 5, 054106.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. A. Belson, J. H. Tu, and C. W. Rowley. 2013b. Modred website. http://pypi.python.org/pypi/modred (Last accessed 11/13).Google ScholarGoogle Scholar
  6. S. L. Brunton, C. W. Rowley, and D. R. Williams. 2013. Reduced-order unsteady aerodynamic models at low Reynolds numbers. J. Fluid Mech. 724, 203--233.Google ScholarGoogle ScholarCross RefCross Ref
  7. T. Bui-Thanh. 2007. Model-constrained optimization methods for reduction of parameterized large-scale systems. Ph.D. Dissertation, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  8. K. K. Chen, J. H. Tu, and C. W. Rowley. 2012. Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22, 6, 887--915.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Chevalier, P. Schlatter, A. Lundbladh, and D. S. Henningson. 2007. SIMSON: A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep., KTH.Google ScholarGoogle Scholar
  10. G. Dergham, D. Sipp, and J.-C. Robinet. 2011. Accurate low dimensional models for determistic fluid systems driven by uncertain forcing. Phys. Fluids 23, 094101.Google ScholarGoogle ScholarCross RefCross Ref
  11. B. L. Ho and R. E. Kalman. 1965. Effective construction of linear state-variable models from input/output data. In Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory.Google ScholarGoogle Scholar
  12. P. J. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. 2011. Turbulence, Coherent Structures, Dynamical Systems and Symmetry 2nd Ed. Cambridge University Press, Cambridge, UK.Google ScholarGoogle Scholar
  13. J. R. Holton. 2004. An Introduction to Dynamic Meteorology. Volume 1, 4th Ed. Academic Press Inc, Burlington, MA.Google ScholarGoogle Scholar
  14. K. H. Hsieh, M. W. Halling, and P. J. Barr. 2006. Overview of vibrational structural health monitoring with respresentative case studies. J. Bridge. Eng. 11, 6, 707--715.Google ScholarGoogle ScholarCross RefCross Ref
  15. P. Huerre and P. A. Monkewitz. 1990. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473--537. DOI:http://dx.doi.org/10.1146/annurev.fluid.22.1.473Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Ilak, S. Bagheri, L. Brandt, C. W. Rowley, and D. S. Henningson. 2010. Model reduction of the nonlinear complex Ginzburg-Landau equation. SIAM J. Appl. Dyn. Sys. 9, 4, 1284--1302. DOI: http://dx.doi.org/10.1137/100787350Google ScholarGoogle ScholarCross RefCross Ref
  17. M. Ilak and C. W. Rowley. 2008. Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20, 034103.Google ScholarGoogle ScholarCross RefCross Ref
  18. J.-N. Juang. 1994. Applied System Identification. Prentice-Hall, Upper Saddle River, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J.-N. Juang and R. S. Pappa. 1985. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dynam. 8, 5, 620--627.Google ScholarGoogle ScholarCross RefCross Ref
  20. J.-N. Juang, M. Phan, L. G. Horta, and R. W. Longman. 1991. Identification of observer/Kalman filter Markov parameters: Theory and experiments. NASA Tech. Mem. 104069.Google ScholarGoogle Scholar
  21. Y. C. Liang, W. Z. Lin, H. P. Lee, S. P. Lim, K. H. Lee, and H. Sun. 2002. Proper orthogonal decomposition and its applications -- Part 2: Model reduction for MEMS dynamical analysis. J. Sound Vib. 256, 3, 515--532.Google ScholarGoogle ScholarCross RefCross Ref
  22. M. Loève. 1955. Probability Theory. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  23. J. L. Lumley. 1967. The structure of inhomogeneous turbulence. In Atmospheric Turbulence and Wave Propogation, A. M. Yaglom and V. I. Tatarski, Eds., Nauka, Moscow, 166--178.Google ScholarGoogle Scholar
  24. Z. Ma, S. Ahuja, and C. W. Rowley. 2011. Reduced order models for control of fluids using the Eigensystem Realization Algorithm. Theor. Comput. Fluid Dyn. 25, 1, 233--247.Google ScholarGoogle ScholarCross RefCross Ref
  25. B. C. Moore. 1981. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Contr. 26, 1, 17--32.Google ScholarGoogle ScholarCross RefCross Ref
  26. K. Pearson. 1901. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 6, 559--572.Google ScholarGoogle ScholarCross RefCross Ref
  27. P. Peterson. 2009. F2PY: A tool for connecting Fortran and Python programs. Int. J. Comput. Sci. 4, 4, 296--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. C. W. Rowley. 2005. Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15, 3, 997--1013.Google ScholarGoogle ScholarCross RefCross Ref
  29. C. W. Rowley, I. Mezič, S. Bagheri, P. Schlatter, and D. S. Henningson. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115--127.Google ScholarGoogle ScholarCross RefCross Ref
  30. P. J. Schmid. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5--28. DOI:http://dx.doi.org/10.1017/S0022112010001217Google ScholarGoogle ScholarCross RefCross Ref
  31. L. Sirovich. 1987. Turbulence and the dynamics of coherent structures, parts I--III. Q. Appl. Math. 3, 561--590.Google ScholarGoogle ScholarCross RefCross Ref
  32. J. H. Tu and C. W. Rowley. 2012. An improved algorithm for balanced POD through an analytic treatment of impulse response tails. J. Comput. Phys. 231, 16, 5317--5333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. J. A. C. Weideman and S. C. Reddy. 2000. A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 4, 465--519. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. K. Willcox and J. Peraire. 2002. Balanced model reduction via the proper orthgonal decomposition. AIAA J. 40, 11, 2323--2330.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Algorithm 945: modred—A Parallelized Model Reduction Library

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader