skip to main content
10.1145/2617841.2620711acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvricConference Proceedingsconference-collections
research-article

Understanding large network datasets through embodied interaction in virtual reality

Published: 09 April 2014 Publication History

Abstract

The intricate web of information we generate nowadays is more massive than ever in the history of mankind. The sheer enormity of big data makes the task of extracting semantic associations out of complex networks more complicated. Stemming this "data deluge" calls for novel unprecedented technologies. In this work, we engineered a system that enhances a user's understanding of large datasets through embodied navigation and natural gestures. This system constitutes an immersive virtual reality environment called the "eXperience Induction Machine" (XIM). One of the applications that we tested using our system is the exploration of the human connectome: the network of nodes and connections that underlie the anatomical architecture of the human brain. As a comparative validation of our technology, we then exposed participants to a connectome dataset using both our system and a state-of-the-art software for visualization and analysis of the same network. We systematically measured participants' understanding and visual memory of the connectomic structure. Our results showed that participants retained more information about the structure of the network when using our system. Overall, our system constitutes a novel approach in the exploration and understanding of large complex networks.

References

[1]
H. Akil, M. E. Martone, and D. C. Van Essen. Challenges and opportunities in mining neuroscience data. Science (New York, N.Y.), 331(6018):708--12, Mar. 2011.
[2]
X. Arsiwalla, A. Betella, E. Martinez, P. Omedas, R. Zucca, and P. Verschure. The dynamic connectome: towards large-scale 3D reconstruction of brain activity in real-time. BMC Neuroscience, 14(Suppl 1):P407, 2013.
[3]
D. Belcher, M. Billinghurst, S. E. Hayes, and R. Stiles. Using Augmented Reality for Visualizing Complex Graphs in Three Dimensions. In Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR '03, pages 84--_, Washington, DC, USA, 2003. IEEE Computer Society.
[4]
G. Bell, T. Hey, and A. Szalay. Beyond the Data Deluge. Science, 323(5919):1297--1298, 2009.
[5]
U. Bernardet, S. Bermúdez i Badia, A. Duff, M. Inderbitzin, S. L. Groux, J. Manzolli, Z. Mathews, A. Mura, A. Väljamäe, and P. F. M. J. Verschure. The eXperience Induction Machine: A New Paradigm for Mixed Reality Interaction Design and Psychological Experimentation. In E. Dubois, P. Gray, and L. Nigay, editors, The Engineering of Mixed Reality Systems. Springer, 1 edition, Nov. 2009.
[6]
U. Bernardet, A. Väljamäe, M. Inderbitzin, S. Wierenga, A. Mura, and P. F. M. J. Verschure. Quantifying human subjective experience and social interaction using the eXperience Induction Machine. Brain research bulletin, 85:305--312, Nov. 2010.
[7]
U. Bernardet and P. F. M. J. Verschure. iqr: a tool for the construction of multi-level simulations of brain and behaviour. Neuroinformatics, 8(2):113--134, 2010.
[8]
A. Betella, R. Carvalho, J. Sanchez-palencia, U. Bernardet, and P. F. M. J. Verschure. Embodied Interaction with Complex Neuronal Data in Mixed-Reality. In Virtual Reality International Conference (VRIC 2012), 2012.
[9]
A. Betella, E. Martínez, R. Zucca, X. D. Arsiwalla, P. Omedas, S. Wierenga, A. Mura, J. Wagner, F. Lingenfelser, E. André, D. Mazzei, A. Tognetti, A. Lanatà, D. De Rossi, and P. F. M. J. Verschure. Advanced interfaces to stem the data deluge in mixed reality: placing human (un)consciousness in the loop. In ACM SIGGRAPH 2013 Posters, SIGGRAPH '13, pages 68:1--68:1, New York, NY, USA, 2013. ACM.
[10]
U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. GraphML Progress Report - Structural Layer Proposal, 2002.
[11]
T. Delbruck, A. Whatley, R. Douglas, K. Eng, K. Hepp, and P. F. M. J. Verschure. A tactile luminous oor for an interactive autonomous space. Robotics and Autonomous Systems, 55(6):433--443, 2007.
[12]
S. Gerhard, A. Daducci, A. Lemkaddem, R. Meuli, J.-P. Thiran, and P. Hagmann. The Connectome Viewer Toolkit: An Open Source Framework to Manage, Analyze, and Visualize Connectomes. Frontiers in neuroinformatics, 5(June):15, 2011.
[13]
G. Goth. Turning data into knowledge. Communications of the ACM, 53(11):13--15, 2010.
[14]
P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns. Mapping the Structural Core of Human Cerebral Cortex. PLoS Biology, 6(7):15, 2008.
[15]
A. Lanatà, G. Valenza, and E. Scilingo. A novel EDA glove based on textile-integrated electrodes for affective computing. Medical & Biological Engineering & Computing, 50(11):1163--1172, 2012.
[16]
S. Le Groux, J. Manzolli, and P. F. Verschure. VR-RoBoser: Real-Time Adaptive Sonification of Virtual Environments Based on Avatar Behavior. In Conference on New Interfaces for Musical Expression (NIME07), pages 371--374, New York, NY, USA, 2007.
[17]
S. Lee, J. Seo, G. J. Kim, and C. mo Park. Evaluation of pointing techniques for ray casting selection in virtual environments. In In Third International Conference on Virtual Reality and Its Application in Industry, pages 38--44, 2003.
[18]
J. Lessiter, A. Miotto, J. Freeman, P. Verschure, and U. Bernardet. CEEDs: Unleashing the Power of the Subconscious. Procedia Computer Science, 7:214--215, Jan. 2011.
[19]
Z. Mathews, S. B. i Badia, and P. F. M. J. Verschure. PASAR: An integrated model of prediction, anticipation, sensation, attention and response for artificial sensorimotor systems. Inf. Sci., 186(1):1--19, 2012.
[20]
M. E. J. Newman. The structure and function of complex networks. SIAM REVIEW, 45:167--256, 2003.
[21]
R. Paradiso, T. Faetti, and S. Werner. Wearable monitoring systems for psychological and physiological state assessment in a naturalistic environment. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pages 2250--2253, 2011.
[22]
Prabhat, A. Forsberg, M. Katzourin, K. Wharton, and M. Slater. A Comparative Study of Desktop, Fishtank, and Cave Systems for the Exploration of Volume Rendered Confocal Data Sets. Visualization and Computer Graphics, IEEE Transactions on, 14(3):551--563, 2008.
[23]
O. Sporns. The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224:109--25, Apr. 2011.
[24]
O. Sporns. The Human Connectome: Origins and Challenges. NeuroImage, Mar. 2013.
[25]
O. Sporns, G. Tononi, and R. Kötter. The Human Connectome: A Structural Description of the Human Brain. PLoS Comput Biol, 1(4):e42, 2005.
[26]
J. R. Swedlow, G. Zanetti, and C. Best. Channeling the data deluge., 2011.
[27]
J. J. Talairach, P. Tournoux, and O. Missir. Referentially oriented cerebral MRI anatomy: an atlas of stereotaxic anatomical correlations for gray and white matter. Stuttgart; New York: G. Thieme Verlag; New York: Thieme Medical Publishers, 1993.
[28]
D. S. Tan, D. Gergle, P. Scupelli, and R. Pausch. Physically large displays improve performance on spatial tasks. ACM Transactions on Computer-Human Interaction, 13(1):71--99, Mar. 2006.
[29]
A. Van Dam, A. S. Forsberg, D. H. Laidlaw, J. J. LaViola, and R. M. Simpson. Immersive VR for Scientific Visualization: A Progress Report. IEEE Computer Graphics and Applications, 20:26--52, 2000.
[30]
K. Wolf. What I grasp is what I control: interacting through grasp releases. In Proceedings of the Sixth International Conference on Tangible, Embedded and Embodied Interaction, TEI '12, pages 389--390, New York, NY, USA, 2012. ACM.

Cited By

View all
  • (2024)Evaluating Node Selection Techniques for Network Visualizations in Virtual RealityProceedings of the 2024 ACM Symposium on Spatial User Interaction10.1145/3677386.3682102(1-11)Online publication date: 7-Oct-2024
  • (2024)VRNConnect: Towards More Intuitive Interaction of 3D Brain Connectivity Data in Virtual Environments2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)10.1109/VRW62533.2024.00011(24-29)Online publication date: 16-Mar-2024
  • (2024)A virtual reality data visualization tool for dimensionality reduction methodsVirtual Reality10.1007/s10055-024-00939-828:1Online publication date: 12-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
VRIC '14: Proceedings of the 2014 Virtual Reality International Conference
April 2014
193 pages
ISBN:9781450326261
DOI:10.1145/2617841
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

  • Laval Virtual: Laval Virtual

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 April 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. connectome
  2. exploration
  3. graphs
  4. immersion
  5. navigation
  6. network
  7. virtual reality

Qualifiers

  • Research-article

Funding Sources

Conference

VRIC '14
Sponsor:
  • Laval Virtual

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)7
Reflects downloads up to 16 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Evaluating Node Selection Techniques for Network Visualizations in Virtual RealityProceedings of the 2024 ACM Symposium on Spatial User Interaction10.1145/3677386.3682102(1-11)Online publication date: 7-Oct-2024
  • (2024)VRNConnect: Towards More Intuitive Interaction of 3D Brain Connectivity Data in Virtual Environments2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)10.1109/VRW62533.2024.00011(24-29)Online publication date: 16-Mar-2024
  • (2024)A virtual reality data visualization tool for dimensionality reduction methodsVirtual Reality10.1007/s10055-024-00939-828:1Online publication date: 12-Feb-2024
  • (2024)Designing a 3D gestural interface to support user interaction with time-oriented data as immersive 3D radar chartsVirtual Reality10.1007/s10055-023-00913-w28:1Online publication date: 23-Jan-2024
  • (2023)Performance Impact of Immersion and Collaboration in Visual Data Analysis2023 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)10.1109/ISMAR59233.2023.00093(780-789)Online publication date: 16-Oct-2023
  • (2023)BrainX3: A Neuroinformatic Tool for Interactive Exploration of Multimodal Brain DatasetsBiomimetic and Biohybrid Systems10.1007/978-3-031-39504-8_11(157-177)Online publication date: 10-Jul-2023
  • (2022)NetImmerse - Evaluating User Experience in Immersive Network ExplorationDigital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Health, Operations Management, and Design10.1007/978-3-031-06018-2_27(391-403)Online publication date: 26-Jun-2022
  • (2021)TangibleData: Interactive Data Visualization with Mid-Air HapticsProceedings of the 27th ACM Symposium on Virtual Reality Software and Technology10.1145/3489849.3489890(1-11)Online publication date: 8-Dec-2021
  • (2021)Show Me How You Interact, I Will Tell You What You Think: Exploring the Effect of the Interaction Style on Users’ Sensemaking about Correlation and Causation in DataProceedings of the 2021 ACM Designing Interactive Systems Conference10.1145/3461778.3462083(564-575)Online publication date: 28-Jun-2021
  • (2019)Immersion or Diversion: Does Virtual Reality Make Data Visualisation More Effective?2019 International Conference on Electronics, Information, and Communication (ICEIC)10.23919/ELINFOCOM.2019.8706403(1-7)Online publication date: Jan-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media