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ABSTRACT

The quantity of information we are producing is soaring: this gener-
ates large amounts of data that are frequently left unexplored. Novel
tools are needed to stem this “data deluge”. We developed a system
that enhances the understanding of large datasets through embodied
navigation and natural gestures using the immersive mixed reality
space called “eXperience Induction Machine” (XIM). One of the
applications of our system is in the exploration of the human brain
connectome: the network of nodes and connections that defines the
information flow in the brain. We exposed participants to a connec-
tome dataset using either our system or a state of the art software for
visualization and analysis of connectomic data. We measured their
understanding and visual memory of the connectome structure. Our
results showed that participants retained more information about
the structure of the network when using our system. Overall, our
system constitutes a novel approach in the exploration and under-
standing of large network datasets.

Index Terms: I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual reality—; E.1 [Data Structures]: Graphs and networks—;

1 INTRODUCTION

The quantity of information we are producing is soaring. This gen-
erates the, so called, “data deluge” [2]. Large chunks of these data
are left unexplored due to their heterogeneity and to the lack of tools
to effectively visualize and analyze them [10].

These data are frequently organized semantically and stored hi-
erarchically using standard formats, such as XML [22]. One of
the most effective approaches to represent large amounts of data
is the use of network (or “graph”) structures. Networks allow to
symbolize the relationships between objects at different scales by
visually displaying datasets as a series of nodes connected through
edges that express different properties and can reveal the behavior
and characteristics of complex systems shaped by the interactions
among its components [16].

In context of large network visualization and understanding, im-
mersive environments offer unique benefits when compared to stan-
dard desktop environments. Previous studies have shown that large
screens promote the use of more efficient cognitive strategies [24];
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surrounding displays, in particular, offer kinetic depth cues (e.g.
3D rotation) thus allowing the user to amplify the understanding of
graphs [1]. Moreover, immersive environments increase the perfor-
mance in data analysis tasks that involve spatial relationships (e.g.
volume, geometry, common features) thus enhancing spatial under-
standing [18].

For these reasons we built an immersive system that uses multi-
modal input and output and permits the embodied interaction with
large network datasets. To do so, we used the eXperience Induction
Machine (XIM), a mixed reality space equipped with a number of
sensors and effectors that we constructed to conduct experiments in
mixed reality [3].

Using the XIM infrastructure we have previously shown the im-
pact of different navigation modes on the understanding of complex
neuronal data designed through a neuronal network simulator [6].
Here we present a new mixed reality application capable of han-
dling large and complex network structures in real time.

As a test scenario we used the human brain connectome, “a com-
prehensive structural description of the network of elements and
connections forming the human brain” [21].

With our system the user can be fully immersed in this complex
data seeking to understand its dynamics and to discover new pat-
terns. We provide an ecological form of interaction since the user
can literally grab data clusters and manipulate them.

In addition, physiological measures (electrodermal activity, heart
rate and respiration) are collected through wearable and unobtrusive
sensors. These implicit responses are analyzed in real time to detect
the user’s interest and suggest to the user new relevant areas in the
dataset.

To validate empirically our system, we compared it to the Con-
nectome Viewer, a state of the art software for visualization and
analysis of connectome data [9].

2 METHODS

2.1 The eXperience Induction Machine
The eXperience Induction Machine (Fig. 1) is an immersive space
constructed to conduct empirical studies on human behavior in
complex, ecologically valid situations that involve embodied inter-
action in mixed reality [4].

The XIM covers an area of about 25 m2 and is equipped with
a number of sensors and effectors. XIM effectors include 4 pro-
jection screens, a luminous interactive floor [8] and a sonification
system [13]. The sensors include a marker-free multi-modal track-
ing system [14], floor-based pressure sensors, microphones as well
as wearable and unobtrusive sensors that measure the user’s phys-
iological state. A glove prototype is used to measure electroder-
mal activity (EDA), finger gestures and hand position in the space
[12], whereas the SmartexTMWWS shirt measures electrocardio-
gram, respiration and body movements [17].

In XIM the game engine Unity 3D [25] is used to render 360
degrees 3D content.
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Figure 1: Schematic illustration of the eXperience Induction Machine
(XIM). The space covers an area of 5.5x5.5m and is equipped with a
number of sensors (labels in red) and effectors (labels in blue).

2.2 The connectome

Figure 2: Visualization of the dataset we used in our study (subject
B from the “human cortex connectivity dataset” [11]). The network is
composed of 998 regions of interest and approximately 28k connec-
tions distributed according to 66 anatomical areas.

The connectome constitutes a large and complex dataset [19]
and scientific research can benefit from its understanding in several
ways. These detailed maps of structural connectivity have already
led to quantitative characterization of various aspects of the brain
architecture and the basis of common brain disorders [21]. More-
over, the effects of developmental variations and aging, the impact
of lesions and the recovery from traumatic brain injury are progres-
sively determined thus opening new opportunities for therapy and
prevention (see [20] for a review).

One of the applications of our system is in the exploration of
the human brain connection matrix (the human ”connectome”), the

network of nodes (denoting neural elements or anatomical regions)
and edges (denoting structural connections) that provides a descrip-
tion of brain connectivity across different scales (single neurons,
neuronal populations, brain regions).

As a benchmark to validate our system we used the “human cor-
tex connectivity dataset” [11]. This dataset is publicly available 1

and constitutes a reference for network analysis of the brain (Fig.
2).

The human cortex connectivity dataset was originally available
in Connectome File Format (CFF)2, a standardized container for-
mat that includes multi-modal datasets (in this case, the term multi-
modal refers to different types of data rather than measurement
modalities). From the CFF we extracted the connectivity data
stored in GraphML format, a standard XML-based structure used
for the representation of graphs composed of nodes and edges with
extra attributes (e.g. strength of edges) [7].

By default our system is capable of parsing GraphML files. To
plot a 3D representation of the network each node is associated with
an X, Y, Z coordinate tuple in accordance with the Talairach coor-
dinates of ROIs [23].

The function of the brain is closely coupled to its structure. For
this reason we coupled the structural representation of the connec-
tome network with iqr, an open source real-time neuronal network
simulator [5]. This allows the user to stimulate data clusters in the
dataset and visualize the resulting activation propagated through the
network.

2.3 Technical description of the system
2.3.1 Graphics
To achieve an optimal real-time visualization of large network
structures, we developed three software components: a) a graphML
parser, b) an atlas and c) a “geometry provider”. These compo-
nents have been implemented in C# using Unity 3D and following
a Model-View-Controller design pattern.

The graphML parser is responsible for the generation of a data
structure that allocates all the graph elements (i.e. nodes and edges).

The atlas is responsible for reading the meta data associated to
the elements that compose the model. These meta data are stored in
XML format and typically consist of spatial information (e.g. 3D
coordinates for each region and node of the network). However,
they can also include extra properties (e.g. color, size, hyperlinks).
Multiple sets of meta data can be used (e.g. distinct sets of coor-
dinates), thus allowing to switch between different representations
and layouts of the same dataset. In our test case, we fed the atlas
with the Talairach coordinate system of the brain [23] to associate
each node of the connectome dataset to its brain region in the virtual
world.

The geometry provider is responsible for plotting the final result
as a 3D visualization by combining the instances generated through
the parser with the coordinates specified within the atlas. The ge-
ometry provider gives flexibility to the visualization of the dataset
since each node or connection is associated to a separate object
instance: this allows to visualize and manipulate the network in
real time by including or excluding objects in accordance to their
properties (e.g. specify threshold values to show/hide connections)
while maintaining a high performance in the system.

2.3.2 Real-time activity
We coupled the structural representation of the network with iqr to
allow the user to manipulate data clusters and visualize in real-time
the resulting activity.

Similarly to the connectome structural networks, neuronal sys-
tems in iqr are specified using the XML format and composed of

1Human cortex connectivity dataset: http://cmtk.org/viewer/datasets
2http://cmtk.org/cfflib/
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Figure 3: Illustration showing our system in the eXperience Induction Machine (XIM) (a). The user can explore the network dataset by physically
walking in the XIM space. A graphical user interface displays properties of the selected area (i.e. name, number of nodes, average strength,
filters applied) as well as the user’s heart rate and electrodermal activity in real time. Through natural hand gestures the user can filter the
connections by complexity or strength (b,c,d) or manipulate data clusters by grabbing them (e,f) to see the resulting activation and propagation
within the network (g).

processes, groups and connections. For this reason we converted
the connectome dataset into an iqr system format. We mapped
the brain areas to iqr processes, the regions of interest to groups
and the edges to the connections.

To visualize the propagation of this activity in our system iqr
and Unity communicate bidirectionally through the YARP platform
[15].

The default status of the iqr simulation is driven by a stochastic
process (Gaussian random noise). When a user in the XIM selects
a specific brain region and grabs it, a signal is sent to iqr and the
corresponding neuronal group is activated by an excitatory current.
The resulting simulated activity generated by iqr is fed back in
real time to the system, leading to a visual change of the updated
activity in the 3D network (Fig. 3e,f,g).

2.3.3 Physiological measures
We enhanced our system with the user’s physiological states mea-
sured through wearable and unobtrusive sensors. The glove mea-
sures electrodermal activity, while the SmartexTMWWS shirt mea-
sures heart rate and respiration.

These implicit responses are analyzed in real time using the SSI
framework [26] to detect the peaks of arousal thus allowing the sys-
tem to create a discovery map of the user based on the areas in the
dataset associated to these peaks and suggest relevant associations
in the dataset (e.g. areas with similar properties such as average
number of ROIs and strength) by highlighting them in the visual-
ization with a yellow halo.

2.3.4 Performance
Using the human connectome dataset as a benchmark, our applica-
tion in the XIM reaches an average rate of 70 frames per second
with the highest quality settings available in Unity 3D (real-time
shadows, antialiasing, best quality texturing). The performance in-
creases up to 170 frames per second by lowering the quality settings
without observing a significant quality loss. Moreover, a standalone
version of our system works without loss of performance on latest
generation laptops and desktop PCs.

2.4 Visualization in XIM
We use 180 degrees immersive projections to visualize the network
dataset (Fig. 3a). The edges are represented as tubes mapped
to different shades of green (RGB values: min 143,188,143, max
34,139,34) in accordance to their strength value. This allows the
user to visually inspect the strength of the connections and have an

overview of their density and dynamics in the distinct areas of the
network.

The nodes are represented as spheres colored in blue when the
network is in a quiescent state. As soon as they are stimulated with
real-time activity they become red (Fig. 3g). The saturation of red
is directly proportional to the activity level (Section 2.3.2).

On the main screen a graphical user interface displays in real
time the following information taken from the dataset:

• Name of the selected area;

• Total number of nodes and connections in the selected area;

• Average strength of the connections in the selected area.

In addition, the GUI shows to the user the filters applied to the
dataset (i.e. strength and complexity) and the electrodermal activity
and heart rate measured in real-time using the wearable sensors.

2.5 Interaction
We adopted the Mircrosoft KinectTMand the glove prototype to
track the user’s gestures and position in the XIM space and map
them to the virtual environment thus allowing real-time embodied
interaction.

To interact with the system the user can perform two main ac-
tions: navigation and manipulation.

2.5.1 Navigation

With our system the user can navigate the dataset by physically
moving in the XIM space. This embodied navigation is achieved
using either the Kinect or the XIM tracking system. By default we
use the Kinect and map the position of the user’s torso to the first
person virtual camera in Unity.

The user starts the navigation in the center of the XIM. The net-
work is initially scaled to fit the main screen and no filters are ap-
plied (i.e. all the edges are shown). The user can walk forward or
backward to zoom in and zoom out the network (shifting the virtual
camera on the Y axis). Left or right movements produce a rotation
of the network on the X axis. The perspective of the virtual camera
is corrected in the lateral displays to maintain the original propor-
tions of the model. This mapping provides an immersive visualiza-
tion by allowing the user to be inside the data space and explore the
different areas.



2.5.2 Manipulation
The user can explore the different areas of the network through nat-
ural hand movements. The right hand acts as a pointer and allows
to select areas and visualize their properties (Fig. 3e). Left hand
movements allow to operate on the parameters of the network and
filter the number of visible connections by strength or complexity
(Fig. 3b,c,d).

In addition, the user can literally grab data clusters and activate
them to observe the resulting activity that is propagating through
the network, leading to an appreciation of structural and functional
interaction (see Section 2.3.2).

2.6 Empirical evaluation
2.6.1 Sample and protocol
We compared our system to the Connectome Viewer, a state of the
art software for visualization and analysis of multi-modal connec-
tome data [9].

20 participants (11 females, mean age 27.3 ±3.45 SD) equally
divided into two groups, were asked to explore a complex connec-
tome structural dataset. We exposed the participants in both groups
to the human cortex connectivity dataset (subject B, see Section
2.2). This dataset is composed of 998 ROIs and approximately 28
thousands connections distributed upon 66 anatomical brain areas.

The first group was exposed to the dataset using the Connectome
Viewer and a latest generation desktop PC, while the second group
experienced the connectome network in XIM.

To measure the structural understanding of the dataset we de-
signed a questionnaire aimed to assess the recollection of the main
structural components of the connectome such as the brain areas,
their interconnections, and their properties (e.g. most populated
brain areas, patterns of stronger connections, etc...). In addition we
measured the participants’ visual memory by asking them to draw
a sketch the network (“drawing task”).

The experimental protocol comprised 1-participant sessions and
followed an independent samples design. During the sessions par-
ticipants in both conditions were exposed to the same connectome
dataset without having any pre-learned knowledge of it. No training
session was required.

Prior to the session, participants were asked to fill out a form with
demographic information and were also instructed to explore freely
the connectome dataset trying to remember as many aspects of the
network as possible. Participants in the XIM were additionally in-
structed to enter the XIM and place themselves at the designated
starting point in the center of the room. Immediately after the ex-
periment, participants in both conditions filled out the questionnaire
and were asked to draw a sketch of the connectome structure with
as many details and information as they could remember.

The average duration of each experimental session was 30 min-
utes.

2.6.2 Score attribution
The questionnaire included 6 questions to assess the participants’
understanding of the connectome dataset structure. We assigned a
score of 1 to questions that were answered correctly and a score of 0
to incorrect answers. Thus, we calculated a total “structural score”
from 1 to 6 for each participant.

To quantify the participants’ performance for visual memory in
the drawing task, we attributed to each participant a score on a scale
from 1 (highly inaccurate) to 5 (highly accurate) in accordance to
the criteria in Table1.

3 RESULTS

We conducted an independent samples T-test to evaluate the differ-
ences between the two conditions (XIM and Connectome Viewer
Toolkit) in strucural scores collected through the questionnaire. We
found a significant main effect for the independent variable (t(18) =

Table 1: Score attribution criteria for the drawing task.
Score Criterion

1 Highly inaccurate: the sketch doesn’t present any com-
ponent of the network.

2 Partially inaccurate: the sketch presents the main com-
ponents of the networks (nodes and edges) distributed
according to a non-structured or random disposition.

3 Fairly accurate: the sketch presents the main compo-
nents of the networks distributed upon the main lobes
(i.e. frontal lobe, parietal lobe, occipital lobe and tem-
poral lobe).

4 Very accurate: the sketch presents the main compo-
nents of the network distributed upon the main ar-
eas and includes at least 5 correctly placed labels of
anatomical brain areas.

5 Highly accurate: the sketch presents the main com-
ponents of the network distributed upon the main ar-
eas and includes more than 5 correctly placed labels of
anatomical brain areas.
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Figure 4: (a) Histogram representing the differences in structural
score between the XIM system and the Connectome Viewer Toolkit.
(b) Histogram representing the differences in score for the drawing
task between the XIM system and the Connectome Viewer Toolkit.
The error bars represent the standard deviation.

-2.53, p < .05). Participants performed significantly better (in terms
of structural score) using the XIM system (mean = 4.30 ±0.95 SD)
as opposed to the Connectome Viewer Toolkit (mean = 2.80 ±1.62
SD) (Fig. 4a).

To evaluate the differences in the visual memory task, we con-
ducted a Mann-Whitney test. The result of the test was signifi-
cant (U = 20.50, z = -2.36, p < .05). Participants completed the
task more accurately when exposed to the connectome dataset in
XIM (mean = 2.5 ±0.7 SD) as opposed to the Connectome Viewer
Toolkit (mean = 1.5 ±0.97 SD) (Fig. 4b).

4 CONCLUSION

To address the question of how to understand large datasets we de-
veloped a system to explore and manipulate complex networks in
real time using the mixed reality space eXperience Induction Ma-
chine (XIM). Through this system the users can explore and manip-
ulate the network while immersed in the dataset.

Furthermore the system measures the user’s electrodermal activ-
ity, heart rate and respiration with wearable sensors to detect peaks
in interest and arousal of the user and suggest relevant associations
in the dataset by highlighting them.

As a test scenario we used a human connectome dataset com-
posed of approximately 28 thousands connections and 1 thousands



nodes.
We conducted an empirical evaluation by comparing our system

to the Connectome Viewer.
Firstly we measured the participants’ understanding of the

dataset structure through a questionnaire. Participants retained
more structural information on the network using the XIM system.
Secondly we measured the participants’ visual memory by means
of a sketch drawing task. Participants showed a significantly higher
accuracy in recalling the network when exposed to the XIM system,
as opposed to the Connectome Viewer.

The results we obtained show the effectiveness of our system in
the understanding of large network datasets. Besides the intrinsic
features of immersive environments such as the XIM (as described
in section 1), the introduction of physiological measures from the
user accounted for the differences we observed by adding a further
layer of (implicit) interaction thus boosting the exploration process.
To quantify and validate empirically the role played by the sugges-
tions based on the user’s physiological signals, further experiments
are needed.

Our system constitutes a novel approach in the visualization and
exploration of large network datasets (in our case, the human con-
nectome) and it provides an ecological form of interaction where
the user is immersed in the data space and can navigate through the
dataset by physically moving in the XIM space, by using natural
gestures and by literally manipulating data clusters.

Future improvements will consist in the enhancement of the user
interaction (in particular the mapping of implicit signals) and in the
integration of new algorithms (e.g. network complexity measures)
to achieve practical applications of our system (e.g. medical). A
neurosurgeon, for instance, could simulate the lesions provoked by
brain surgery and observe the resultant changes in connectivity in
the areas involved.

The exploration process will be further guided by a synthetic
“Sentient Agent” that will enhance our system with suggestions
based on the collective experience of past users.

Finally, we aim to generalize and validate our mixed reality sys-
tem to support large and complex networks from a wide range of
different domains (e.g. social networks).
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