skip to main content
10.1145/2619955.2619960acmotherconferencesArticle/Chapter ViewAbstractPublication PagesnanocomConference Proceedingsconference-collections
tutorial

A Molecular Phase-Locked Loop

Published: 06 May 2014 Publication History

Abstract

Molecular communications has been considered as a new paradigm in nano-networks. Similar to classical wireless communications, molecular communications also consists of three modules, i.e., the transmitter, the signal propagation (channel) and the receiver. Within each module, particle exchange is involved according to a specific process, namely, particle emission, particle diffusion, and particle reception. The objective of this paper is to characterise the key-component, phase-locked loop (PLL), under the particle diffusion process of molecular communications. The molecular PLL is examined by characterizing the three elements, i.e., phase detector (PD), loop filter (LF), and voltage controlled oscillator (VCO). PD compares the concentration of input particles and the concentration of locally generated particles, then outputs the error signal between two kinds of such particles/molecules. LF samples the concentration error signal and amplifies it as output to the VCO. Then VCO generates the response of the concentration error signal. Numerical results are demonstrated not only for three elements, but also for the whole PLL model, in terms of tracking performance and robustness.

References

[1]
I. F. Akyildiz, F. Brunetti, and C. Blazquez. Nanonetworks: a new communication paradigm at molecular level. Computer Networks (Elsevier) Journal, 52:2260--2279, Aug. 2008.
[2]
Y. Ali and L. Zhang. Relativistic heat conduction. International Journal of Heat and Mass Transfer, 48:2397--2406, 2005.
[3]
B. Atakan and O. B. Akan. On channel capacity and error compensation in molecular communication. Trans. Comput. Syst. Biol., 10:59--80, Feb. 2008.
[4]
B. Atakan and O. B. Akan. Deterministic capacity of information flow in molecular nanonetworks. Nano Commun. Netw., 1(1):31--42, Mar. 2010.
[5]
B. Atakan, S. GalmÃl's, and O. B. Akan. Nanoscale communication with molecular arrays in nanonetworks. IEEE Trans Nanobiosci, 11(2):149--160, Jun. 2012.
[6]
V. Balzani, A. Credi, and M. Venturi. Molecular devices and machines. Nanotoday, 2(2):18--25, April 2007.
[7]
T. Bulter, S.-G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao. Design of artificial cell-cell communications using gene and metabolic networks. Proc. Natl. Acad. Sci., 101:2299--2304, 2004.
[8]
E. L. Cussler. Diffusion. Mass Transfer in Fluid Systems. Cambridge University Press, second edition, 1997.
[9]
T. Danino, O. Mondragon-Palomino, L. Tsimring, and J. Hasty. A synthetic oscillatory network of transcriptional regulators. Nature, 463:326--330, 2010.
[10]
M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403:335--338, 2000.
[11]
R. A. Freitas. Nanomedicine, Volume I: Basic Capabilities. Landes Bioscience, 1999.
[12]
J. Goutsias and G. Jenkinson. Markovian dynamics on complex reaction networks. Physics Reports, 529:199--264, 2013.
[13]
M. Heinemann and S. Panke. Synthetic biology âĂŞ putting engineering into biology. Bioinformatics, 22(22):2790--2799, 2006.
[14]
S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, and T. Nakano. Molecular communication. In NSTI Nanotech, Anaheim, CA., 2005.
[15]
L.-S. Meng, P.-C. Yeh, K.-C. Chen, and I. F. Akyildiz. A diffusion-based binary digital communication system. In IEEE ICC 2012, pages 4985--4989, Ottawa, Canada, 2012.
[16]
M. Moore, T. Suda, and K. Oiwa. Molecular communication: Modeling noise effects on information rate. IEEE Trans Nanobiosci, 8(2):169--180, 2009.
[17]
T. Nakano and L. Jian-Qin. Design and analysis of molecular relay channels: An information theoretic approach. IEEE Trans Nanobiosci, 9(3):213--221, 2010.
[18]
T. Nakano and M. Moore. In-sequence molecule delivery over an aqueous medium. Nano Commun. Netw., 1(3):181--188, Sep. 2010.
[19]
T. Nakano, M. Moore, F. Wei, A. Vasilakos, and J. Shuai. Molecular communication and networking: Opportunities and challenges. IEEE Trans Nanobiosci, 11(2):135--148, 2012.
[20]
M. Pierobon and I. F. Akyildiz. A physical end-to-end model for molecular communication in nanonetworks. IEEE J Sel Area Comm, 28(4):602--611, 2010.
[21]
M. Pierobon and I. F. Akyildiz. Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Trans Signal Proces, 59(6):2532--2547, 2011.
[22]
K. V. Srinivas, R. S. Adve, and A. W. Eckford. Molecular communication in fluid media: The additive inverse Gaussian noise channel. IEEE Trans Inform Theory, 58(7):4678--4692, 2012.
[23]
T. Suda, M. Moore, T. Nakano, R. Egashira, and A. Enomoto. Exploratory research on molecular communication between nanomachines. In Genetic and Evolutionary Computation Conference (GECCO), 2005.
[24]
A. Taylor, M. Tinsley, F. Wang, Z. Huang, and K. Showalter. Dynamic quorum sensing and synchronization in large population of chemical oscillators. Science, 323:614--617, 2009.
[25]
C. M. Waters and B. L. Bassler. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Develop. Biol., 21:319--346, Nov. 2005.
[26]
P.-C. Yeh, K.-C. Chen, Y.-C. Lee, L.-S. Meng, P.-J. Shih, P.-Y. Ko, W.-A. Lin, and C.-H. Lee. A new frontier of wireless communication theory: Diffusion-based molecular communications. IEEE Wirel Commun, 19(5):28--35, 2012.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
NANOCOM' 14: Proceedings of ACM The First Annual International Conference on Nanoscale Computing and Communication
May 2014
194 pages
ISBN:9781450329798
DOI:10.1145/2619955
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 May 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Biochemical Device
  2. Molecular Communications
  3. Particle diffusion
  4. Phase-Locked Loop

Qualifiers

  • Tutorial
  • Research
  • Refereed limited

Conference

NANOCOM' 14

Acceptance Rates

NANOCOM' 14 Paper Acceptance Rate 25 of 37 submissions, 68%;
Overall Acceptance Rate 97 of 135 submissions, 72%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 82
    Total Downloads
  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media