skip to main content
10.1145/2623330.2623364acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Improving management of aquatic invasions by integrating shipping network, ecological, and environmental data: data mining for social good

Published:24 August 2014Publication History

ABSTRACT

The unintentional transport of invasive species (i.e., non-native and harmful species that adversely affect habitats and native species) through the Global Shipping Network (GSN) causes substantial losses to social and economic welfare (e.g., annual losses due to ship-borne invasions in the Laurentian Great Lakes is estimated to be as high as USD 800 million). Despite the huge negative impacts, management of such invasions remains challenging because of the complex processes that lead to species transport and establishment. Numerous difficulties associated with quantitative risk assessments (e.g., inadequate characterizations of invasion processes, lack of crucial data, large uncertainties associated with available data, etc.) have hampered the usefulness of such estimates in the task of supporting the authorities who are battling to manage invasions with limited resources. We present here an approach for addressing the problem at hand via creative use of computational techniques and multiple data sources, thus illustrating how data mining can be used for solving crucial, yet very complex problems towards social good. By modeling implicit species exchanges as a network that we refer to as the Species Flow Network (SFN), large-scale species flow dynamics are studied via a graph clustering approach that decomposes the SFN into clusters of ports and inter-cluster connections. We then exploit this decomposition to discover crucial knowledge on how patterns in GSN affect aquatic invasions, and then illustrate how such knowledge can be used to devise effective and economical invasive species management strategies. By experimenting on actual GSN traffic data for years 1997-2006, we have discovered crucial knowledge that can significantly aid the management authorities.

Skip Supplemental Material Section

Supplemental Material

p1699-sidebyside.mp4

mp4

228.4 MB

References

  1. R. Abell, M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Naseka, R. Ng, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. Lopez, R. E. Reis, J. G. Lundberg, M. H. Sabaj Perez, and P. Petry. Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58(5):403{414, May 2008.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson. World Ocean Atlas 2009, Volume S: Salinity. In S. Levitus, editor, NOAA Atlas NESDIS, volume 69, page 184. U.S. Government Printing Office, Washington, D.C., 2010.Google ScholarGoogle Scholar
  3. A.-L. Barab--asi, R. Albert, and H. Jeong. Scale-free characteristics of random networks: the topology of the world-wide web. Physica A: Statistical Mechanics and its Applications, 281(1--4):69{77, June 2000.Google ScholarGoogle Scholar
  4. K. Bohmann, A. Evans, M. T. P. Gilbert, G. R. Carvalho, S. Creer, M. Knapp, D. W. Yu, and M. de Bruyn. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution, 29:358{367, May 2014.Google ScholarGoogle ScholarCross RefCross Ref
  5. A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51:661{703, Apr 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. N. I. S. Council. 2008--2012 national invasive species management plan, 2008.Google ScholarGoogle Scholar
  7. S. Devin and J.-N. Beisel. Biological and ecological characteristics of invasive species: a gammarid study. Biological Invasions, 9(1):13{24, 2007.Google ScholarGoogle Scholar
  8. J. M. Drake and D. M. Lodge. Global hot spots of biological invasions: Evaluating options for ballast-water management. Proceedings: Biological Sciences, 271(1539):575{580, Mar. 2004.Google ScholarGoogle Scholar
  9. O. Floerl, G. Rickard, G. Inglis, and H. Roulston. Predicted effects of climate change on potential sources of non-indigenous marine species. Diversity and Distributions, 19(3):257{267, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Girvan and M. E. J. Newman. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12):7821{7826, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  11. B. Goodwin, A. McAllister, and L. Fahrig. Predicting invasiveness of plant species based on biological information. Conservation Biology, 13:422{426, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  12. R. Guimera and L. A. Amaral. Functional cartography of complex metabolic networks. Nature, 433:895{900, Feb. 2005.Google ScholarGoogle ScholarCross RefCross Ref
  13. B. S. Halpern, S. Walbridge, K. A. Selkoe, C. V. Kappel, F. Micheli, C. D'Agrosa, J. F. Bruno, K. S. Casey, C. Ebert, H. E. Fox, R. Fujita, D. Heinemann, H. S. Lenihan, E. M. P. Madin, M. T. Perry, E. R. Selig, M. Spalding, R. Steneck, and R. Watson. A global map of human impact on marine ecosystems. Science, 319(5865):948{952, Feb. 2008.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. P. Keller, J. M. Drake, M. B. Drew, and D. M. Lodge. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions, 17(1):93{102, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. P. Keller, D. M. Lodge, M. A. Lewis, and J. F. Shogren. Bioeconomics of Invasive Species : Integrating Ecology, Economics, Policy, and Management: Integrating Ecology, Economics, Policy, and Management. Oxford University Press, Apr. 2009.Google ScholarGoogle Scholar
  16. R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson. World ocean atlas 2009, volume 1: Temperature. In S. Levitus, editor, NOAA Atlas NESDIS, volume 68, page 184. U.S. Government Printing Office, Washington, D.C., 2010.Google ScholarGoogle Scholar
  17. J. L. Molnar, R. L. Gamboa, C. Revenga, and M. D. Spalding. Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment, 6(9):485{492, Feb. 2008.Google ScholarGoogle ScholarCross RefCross Ref
  18. G. Palla, I. Der--enyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435(7043):814{818, June 2005.Google ScholarGoogle ScholarCross RefCross Ref
  19. D. Pimentel, R. Zuniga, and D. Morrison. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52(3):273{288, Feb 2005.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Richard, S. A. Morley, M. A. S. Thorne, and L. S. Peck. Estimating long-term survival temperatures at the assemblage level in the marine environment: Towards macrophysiology. PLoS ONE, 7(4):e34655, Apr. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118{1123, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Rothlisberger, D. Finnoff, R. Cooke, and D. Lodge. Ship-borne nonindigenous species diminish great lakes ecosystem services. Ecosystems, 15(3):1{15, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  23. M. Sales-Pardo, R. Guimera, A. Moreira, and L. Amaral. Extracting the hierarchical organization of complex systems. Proc. National Academy of Sciences of the United States of America, 104:15224{15229, Sept. 2007.Google ScholarGoogle ScholarCross RefCross Ref
  24. H. Seebens, M. T. Gastner, and B. Blasius. The risk of marine bioinvasion caused by global shipping. Ecology Letters, Apr. 2013.Google ScholarGoogle ScholarCross RefCross Ref
  25. C. E. Shannon and W. Weaver. A Mathematical Theory of Communication. University of Illinois Press, Champaign, IL, USA, 1963. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. D. Spalding, H. E. Fox, G. R. Allen, N. Davidson, Z. A. F. na, M. Finlayson, B. S. Halpern, K. D. Martin, E. Mcmanus, J. Molnar, C. A. Recchia, and J. Robertson. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience, 57(7):573{583, July 2007.Google ScholarGoogle ScholarCross RefCross Ref
  27. E. Tufte. Beautiful Evidence. Graphics Press, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Wonham, J. Byers, E. D. Grosholz, and B. Leung. Modeling the relationship between propagule pressure and invasion risk to inform policy and management. Ecological Applications, Mar. 2013.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Improving management of aquatic invasions by integrating shipping network, ecological, and environmental data: data mining for social good

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      KDD '14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
      August 2014
      2028 pages
      ISBN:9781450329569
      DOI:10.1145/2623330

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 24 August 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      KDD '14 Paper Acceptance Rate151of1,036submissions,15%Overall Acceptance Rate1,133of8,635submissions,13%

      Upcoming Conference

      KDD '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader