skip to main content
research-article

QLib: Quantum module library

Published: 06 October 2014 Publication History

Abstract

Quantum algorithms are known for their ability to solve some problems much faster than classical algorithms. They are executed on quantum circuits, which consist of a cascade of quantum gates. However, synthesis of quantum circuits is not straightforward because of the complexity of quantum algorithms.
Generally, quantum algorithms contain two parts: classical and quantum. Thus, synthesizing circuits for the two parts separately reduces overall synthesis complexity. In addition, many quantum algorithms use similar subroutines that can be implemented with similar circuit modules. Because of their frequent use, it is important to use automated scripts to generate such modules efficiently. These modules can then be subjected to further synthesis optimizations.
This article proposes QLib, a quantum module library, which contains scripts to generate quantum modules of different sizes and specifications for well-known quantum algorithms. Thus, QLib can also serve as a suite of benchmarks for quantum logic and physical synthesis.

References

[1]
A. J. Abhari, A. Faruque, M. J. Dousti, et al. 2012. Scaffold: Quantum programming language. ftp://ftp.cs.princeton.edu/techreports/2012/934.pdf
[2]
A. Ambainis and R. Špalek. 2006. Quantum algorithms for matching and network flows. In Proceedings of the Annual Conference on Theoretical Aspects of Computer Science. 172--183.
[3]
S. Beauregard. 2003. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Info. Computing 3, 2, 175--185.
[4]
A. M. Childs and R. Kothari. 2011. Quantum query complexity of minor-closed graph properties. In Proceedings of the Annual Conference on Theoretical Aspects of Computer Science. 661--672.
[5]
S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton. 2008. A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1.
[6]
J. Donald and N. K. Jha. 2008. Reversible logic synthesis with Fredkin and Peres gates. ACM J. Emerg. Tech. Comput. Syst. 4, 1, Article 2.
[7]
T. G. Draper. 2000. Addition on a quantum computer. (2000). arXiv:quant-ph/0008033v1.
[8]
B. Drury and P. J. Love. 2008. Constructive quantum Shannon decomposition from Cartan involutions. arXiv:0806.4015v1.
[9]
E. Fredkin and T. Toffoli. 2002. Conservative Logic. Springer, 47--81.
[10]
D. Grosse, R. Wille, G.W. Dueck, and R. Drechsler. 2009. Exact multiple-control Toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28, 5, 703--715.
[11]
L. K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the Annual ACM Symposium on the Theory of Computing. 212--219.
[12]
P. Gupta, A. Agrawal, and N. K. Jha. 2006. An algorithm for synthesis of reversible logic circuits. IEEE Trans. CAD 25, 11, 2317--2330.
[13]
K. Iwama, H. Nishimura, R. Raymond, and J. Teruyama. 2012. Quantum counterfeit coin problems. Theor. Comput. Sci. 456, 51--64.
[14]
S. Jordan. 2011. Quantum Algorithm Zoo. http://math.nist.gov/quantum/zoo/
[15]
P. Kaye, R. Laflamme, and M. Mosca. 2007. An Introduction to Quantum Computing. Oxford University Press, Inc.
[16]
C. Lin, A. Chakrabarti, and N. K. Jha. 2013. Optimized quantum gate library for various physical machine descriptions. IEEE Trans. VLSI Syst. 21, 2055--2068.
[17]
C. Lin, A. Chakrabarti, and N. K. Jha. 2014. FTQLS: Fault-tolerant quantum logic synthesis. IEEE Trans. VLSI Syst. 22, 1350--1363.
[18]
C. Lin and N. K. Jha. 2014. RMDDS: Reed-Muller decision diagram synthesis of reversible logic circuits. J. Emerg. Technol. Comput. Syst. 10, 2, Article 14.
[19]
I. L. Markov and M. Saeedi. 2012. Constant-optimized quantum circuits for modular multiplication and exponentiation. Quantum Info. Computing 12, 5--6, 361--394.
[20]
D. Maslov, G. W. Dueck, and D. M. Miller. 2005. Toffoli network synthesis with templates. IEEE Trans. CAD 24, 6, 807--817.
[21]
D. Maslov, D. Miller, and G. Dueck. 2007. Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Design Automation Electronic Syst. 12, 4, Article 42.
[22]
D. M. Miller, D. Maslov, and G. W. Dueck. 2003. A transformation based algorithm for reversible logic synthesis. In Proceedings of the Design Automation Conference. 318--323.
[23]
M. Nielsen and I. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge University Press.
[24]
Y. Pang, S. Wang, Z. He, J. Lin, S. Sultana, and K. Radecka. 2011. Positive Davio-based synthesis algorithm for reversible logic. In Proceedings of the IEEE International Conference on Computer Design. 212--218.
[25]
A. Peres. 1985. Reversible logic and quantum computers. Phys. Rev. A 32, 6, 3266--3276.
[26]
QASM. 2006. qasm-tools. (2006). http://www.media.mit.edu/quanta/quanta-web/projects/qasm-tools/.
[27]
R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 2, 120--126.
[28]
M. Saeedi, M. Arabzadeh, M. S. Zamani, and M. Sedighi. 2011. Block-based quantum-logic synthesis. Quantum Infor. Process. 11, 3, 262--277.
[29]
M. Saeedi, M. S. Zamani, M. Sedighi, and Z. Sasanian. 2010. Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Tech. Comput. Syst. 6, 4, Article 13.
[30]
V. V. Shende, S. S. Bullock, and I. L. Markov. 2006. Synthesis of quantum logic circuits. IEEE Trans. CAD 25, 6, 1000--1010.
[31]
V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. 2003. Synthesis of reversible logic circuits. IEEE Trans. CAD 22, 6, 710--722.
[32]
P. W. Shor. 1997. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computing 26, 5, 1484--1509.
[33]
M. Soeken, R. Wille, and R. Drechsler. 2010. Hierarchical synthesis of reversible circuits using positive and negative Davio decomposition. In Proceedings of the International Design Test Workshop. 143--148.
[34]
V. Vedral, A. Barenco, and A. Ekert. 1996. Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 1, 147--153.
[35]
R. Wille and R. Drechsler. 2009. BDD-based synthesis of reversible logic for large functions. In Proceedings of the Design Automation Conference. 270--275.

Cited By

View all
  • (2025)A comprehensive study of quantum arithmetic circuitsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rsta.2023.0392383:2288Online publication date: 16-Jan-2025
  • (2024)A Case for Synthesis of Recursive Quantum Unitary ProgramsProceedings of the ACM on Programming Languages10.1145/36329018:POPL(1759-1788)Online publication date: 5-Jan-2024
  • (2024)BeSnake: A Routing Algorithm for Scalable Spin-Qubit ArchitecturesIEEE Transactions on Quantum Engineering10.1109/TQE.2024.34294515(1-22)Online publication date: 2024
  • Show More Cited By

Index Terms

  1. QLib: Quantum module library

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 11, Issue 1
    September 2014
    142 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/2676581
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 06 October 2014
    Accepted: 01 March 2014
    Revised: 01 March 2014
    Received: 01 May 2013
    Published in JETC Volume 11, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Quantum benchmark
    2. quantum circuit
    3. quantum library

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Intelligence Advanced Research Projects Agency (IARPA) via of Interior National Business Center

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)56
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 17 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)A comprehensive study of quantum arithmetic circuitsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rsta.2023.0392383:2288Online publication date: 16-Jan-2025
    • (2024)A Case for Synthesis of Recursive Quantum Unitary ProgramsProceedings of the ACM on Programming Languages10.1145/36329018:POPL(1759-1788)Online publication date: 5-Jan-2024
    • (2024)BeSnake: A Routing Algorithm for Scalable Spin-Qubit ArchitecturesIEEE Transactions on Quantum Engineering10.1109/TQE.2024.34294515(1-22)Online publication date: 2024
    • (2024)Inexact Quantum Square Root Circuit for NISQ DevicesIEEE Access10.1109/ACCESS.2024.345599712(125856-125870)Online publication date: 2024
    • (2024)Chemical reaction simulator on quantum computers by first quantization—Basic treatment: TheoreticalAIP Advances10.1063/5.023998014:12Online publication date: 3-Dec-2024
    • (2023)SpinQ: Compilation Strategies for Scalable Spin-Qubit ArchitecturesACM Transactions on Quantum Computing10.1145/36244845:1(1-36)Online publication date: 16-Dec-2023
    • (2023) Improving the number of gates and their spread in integer multipliers on quantum computing Physical Review A10.1103/PhysRevA.107.042621107:4Online publication date: 27-Apr-2023
    • (2023)Lax dynamics for Cartan decomposition with applications to Hamiltonian simulationIMA Journal of Numerical Analysis10.1093/imanum/drad01844:3(1406-1434)Online publication date: 25-Apr-2023
    • (2023)Efficient design of a quantum absolute-value circuit using Clifford+T gatesThe Journal of Supercomputing10.1007/s11227-023-05162-x79:11(12656-12670)Online publication date: 18-Mar-2023
    • (2022)Practical approximate quantum multipliers for NISQ devicesProceedings of the 19th ACM International Conference on Computing Frontiers10.1145/3528416.3530244(121-130)Online publication date: 17-May-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media