skip to main content
10.1145/2632048.2632059acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
research-article

CrowdRecruiter: selecting participants for piggyback crowdsensing under probabilistic coverage constraint

Published:13 September 2014Publication History

ABSTRACT

This paper proposes a novel participant selection framework, named CrowdRecruiter, for mobile crowdsensing. CrowdRecruiter operates on top of energy-efficient Piggyback Crowdsensing (PCS) task model and minimizes incentive payments by selecting a small number of participants while still satisfying probabilistic coverage constraint. In order to achieve the objective when piggybacking crowdsensing tasks with phone calls, CrowdRecruiter first predicts the call and coverage probability of each mobile user based on historical records. It then efficiently computes the joint coverage probability of multiple users as a combined set and selects the near-minimal set of participants, which meets coverage ratio requirement in each sensing cycle of the PCS task. We evaluated CrowdRecruiter extensively using a large-scale real-world dataset and the results show that the proposed solution significantly outperforms three baseline algorithms by selecting 10.0% -- 73.5% fewer participants on average under the same probabilistic coverage constraint.

Skip Supplemental Material Section

Supplemental Material

p703-zhang.mov

mov

236.2 MB

References

  1. R. K. Ganti, F. Ye, and H. Lei. Mobile crowdsensing: Current state and future challenges. IEEE Communications Magazine, 49:32--39, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  2. N. Roy andA. Misra, C. Julien, S. K. Das, and J. Biswas. An energy-efficient quality adaptive framework for multi-modal sensor context recognition. In Proceedings of PerCom, pages 63--73. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and A. T Campbell. Supporting energy-efficient uploading strategies for continuous sensing applications on mobile phones. Pervasive Computing, pages 355--372, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Nicholas D Lane, Yohan Chon, Lin Zhou, Yongzhe Zhang, Fan Li, Dongwon Kim, Guanzhong Ding, Feng Zhao, and Hojung Cha. Piggyback crowdsensing (pcs): energy efficient crowdsourcing of mobile sensor data by exploiting smartphone app opportunities. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, page 7. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Xiong, L. Wang, and D. Zhang. Eemc: An energy-efficient mobile crowdsensing mechanism by reusing call/sms connections. In Proceedings of NetMob, pages 323--329. MIT, 2013.Google ScholarGoogle Scholar
  6. Leye Wang, Daqing Zhang, and Haoyi Xiong. effsense: energy-efficient and cost-effective data uploading in mobile crowdsensing. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication, pages 1075--1086. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Christos H. Papadimitriou and Yaron Singer. Budget feasible mechanisms. CoRR, abs/1002.2334, 2010.Google ScholarGoogle Scholar
  8. V. D. Blondel, M. Esch, C. Chan, F. Clerot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, and C. Ziemlicki. Data for development: the d4d challenge on mobile phone data. 2012.Google ScholarGoogle Scholar
  9. Nicholas D Lane, Ye Xu, Hong Lu, Shaohan Hu, Tanzeem Choudhury, Andrew T Campbell, and Feng Zhao. Enabling large-scale human activity inference on smartphones using community similarity networks (csn). In Proceedings of the 13th international conference on Ubiquitous computing, pages 355--364. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Yohan Chon, Nicholas D Lane, Fan Li, Hojung Cha, and Feng Zhao. Automatically characterizing places with opportunistic crowdsensing using smartphones. In Proc. 14th Int. Conf. Ubiquitous Computing (UbiComp12). ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. John Krumm and Dany Rouhana. Placer: semantic place labels from diary data. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 163--172. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Sibren Isaacman, Richard Becker, Ramón Cáceres, Stephen Kobourov, Margaret Martonosi, James Rowland, and Alexander Varshavsky. Identifying important places in people?s lives from cellular network data. In Pervasive Computing, pages 133--151. Springer, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Michal Ficek, Nathaniel Clark, and Lukáš Kencl. Can crowdsensing beat dynamic cell-id? In Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones, page 10. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. K. K. Rachuri., C. Mascolo, M. Musolesi, and P. J. Rentfrow. Sociablesense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In Proceedings of MobiCom, pages 73--84. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Jiangchuan Zheng and Lionel M Ni. An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 153--162. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Chenren Xu, Sugang Li, Gang Liu, Yanyong Zhang, Emiliano Miluzzo, Yih-Farn Chen, Jun Li, and Bernhard Firner. Crowd++: unsupervised speaker count with smartphones. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 43--52. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Harald Weinschrott, Julian Weisser, Frank Durr, and Kurt Rothermel. Participatory sensing algorithms for mobile object discovery in urban areas. In Pervasive Computing and Communications (PerCom), 2011 IEEE International Conference on, pages 128--135. IEEE, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Suhas Mathur, Tong Jin, Nikhil Kasturirangan, Janani Chandrasekaran, Wenzhi Xue, Marco Gruteser, and Wade Trappe. Parknet: drive-by sensing of road-side parking statistics. In Proceedings of the 8th international conference on Mobile systems, applications, and services, pages 123--136. ACM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Yifei Jiang, Du Li, Guang Yang, Qin Lv, and Zhigang Liu. Deliberation for intuition: a framework for energy-efficient trip detection on cellular phones. In Proceedings of the 13th international conference on Ubiquitous computing, pages 315--324. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gabe Cohn, Sidhant Gupta, Tien-Jui Lee, Dan Morris, Joshua R Smith, Matthew S Reynolds, Desney S Tan, and Shwetak N Patel. An ultra-low-power human body motion sensor using static electric field sensing. In 12th ACM international conference on Ubiquitous computing (Ubicomp), 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Youngki Lee, Souneil Park, and Junehwa Song. A scalable and energy-efficient context monitoring framework for mobile personal sensor networks. Mobile Computing, IEEE Transactions on, 9(5):686--702, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. D. Gordon, J. Czerny, T. Miyaki, and M. Beigl. Energy-efficient activity recognition using prediction. In Proceedings of ISWC, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. B. Priyantha, D. Lymberopoulos, and J. Liu. Littlerock: Enabling energy-efficient continuous sensing on mobile phones. Pervasive Computing, IEEE, 10(2):12--15, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. D. Chu, N. D. Lane, T. T Lai, C. Pang, X. Meng, Q. Guo, F. Li, and F. Zhao. Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings of SenSys, SenSys '11, pages 54--67, New York, NY, USA, 2011. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kiran K Rachuri, Christos Efstratiou, Ilias Leontiadis, Cecilia Mascolo, and Peter J Rentfrow. Metis: Exploring mobile phone sensing offloading for efficiently supporting social sensing applications. In Proceedings of PerCom, volume 18, page 22, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  26. F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power wireless bus. In Proceedings of SenSys, pages 1--14. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. D. Puccinelli and S. Giordano. Connectivity and energy usage in low-power wireless: An experimental study. In Proceedings of PerCom Workshops, pages 590--595. IEEE, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  28. D. Akimura, Y. Kawahara, and T. Asami. Compressed sensing method for human activity sensing using mobile phone accelerometers. In Proceedings of INSS, pages 1--4. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  29. D. Philipp, J. Stachowiak, P. Alt, F. Dürr, and K. Rothermel. Drops: Model-driven optimization for public sensing systems. In Proceedings of PerCom, volume 18, page 22, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  30. H. Weinschrott, F. Durr, and K. Rothermel. Streamshaper: Coordination algorithms for participatory mobile urban sensing. In Proceedings of MASS, pages 195--204. IEEE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  31. M. Musolesi, M. Piraccini, K. Fodor, A. Corradi, and A. T Campbell. Supporting energy-efficient uploading strategies for continuous sensing applications on mobile phones. In Proceedings of Pervasive, pages 355--372. January 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. X. Sheng, J. Tang, and W. Zhang. Energy-efficient collaborative sensing with mobile phones. In Proceedings of INFOCOM, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  33. Sasank Reddy, Katie Shilton, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava. Using context annotated mobility profiles to recruit data collectors in participatory sensing. In Location and Context Awareness, pages 52--69. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Reddy, D. Estrin, and M. Srivastava. Recruitment framework for participatory sensing data collections. In Proceedings of Pervasive, pages 138--155. 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Adish Singla and Andreas Krause. Incentives for privacy tradeoff in community sensing. In First AAAI Conference on Human Computation and Crowdsourcing, 2013.Google ScholarGoogle Scholar
  36. Giuseppe Cardone, Luca Foschini, Paolo Bellavista, Antonio Corradi, Cristian Borcea, Manoop Talasila, and Reza Curtmola. Fostering participaction in smart cities: a geo-social crowdsensing platform. Communications Magazine, IEEE, 51(6), 2013.Google ScholarGoogle ScholarCross RefCross Ref
  37. A. Ahmed, K. Yasumoto, Y. Yamauchi, and M. Ito. Distance and time based node selection for probabilistic coverage in people-centric sensing. In Proceedings of SECON, pages 134--142. IEEE, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  38. S. Hachem, A Pathak, and V. Issarny. Probabilistic registration for large-scale mobile participatory sensing. In Proceedings of PerCom, volume 18, page 22, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  39. J. Weinberg, L. D. Brown, and J. R. Stroud. Bayesian forecasting of an inhomogeneous poisson process with applications to call center data. Journal of the American Statistical Association, 102(480):1185--1198, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  40. Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular set function maximization. Optimization online, pages 1--25, 2007.Google ScholarGoogle Scholar
  41. Daniel T Wagner, Andrew Rice, and Alastair R Beresford. Device analyzer: Large-scale mobile data collection. In Workshop on Big Data Analytics, 2013.Google ScholarGoogle Scholar
  42. Chunhui Zhang, Xiang Ding, Guanling Chen, Ke Huang, Xiaoxiao Ma, and Bo Yan. Nihao: A predictive smartphone application launcher. In The 4th International Conference on Mobile Computing, Applications, and Services (MobiCase), pages 294--313. Springer, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  43. Ralph Lange, F Durr, and Kurt Rothermel. Efficient tracking of moving objects using generic remote trajectory simplification. In Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010 8th IEEE International Conference on, pages 829--831. IEEE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  44. Crispin W Gardiner et al. Handbook of stochastic methods, volume 3. Springer Berlin, 1985.Google ScholarGoogle Scholar
  45. David J Eck. Introduction to programming using java, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. CrowdRecruiter: selecting participants for piggyback crowdsensing under probabilistic coverage constraint

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      UbiComp '14: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing
      September 2014
      973 pages
      ISBN:9781450329682
      DOI:10.1145/2632048

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 September 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate764of2,912submissions,26%

      Upcoming Conference

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader