skip to main content
column

A polynomial time algorithm for computing all minimal decompositions of a polynomial

Published:10 July 2014Publication History
Skip Abstract Section

Abstract

The composition of two polynomials g(h) = goh is a polynomial. For a given polynomial f we are interested in finding a functional decomposition f = goh. In this paper an algorithm is described, which computes all minimal decompositions in polynomial time. In contrast to many previous decomposition algorithms this algorithm works without restrictions on the degree of the polynomial and the characteristic of the ground field. The algorithm can be iteratively applied to compute all decompositions. It is based on ideas of Landau & Miller (1985) and Zippel (1991). Additionally, an upper bound on the number of minimal decompositions is given.

References

  1. M. D. Atkinson (1975). An Algorithm for Finding the Blocks of a Permutation Group. Mathematics of Computation 29(131), 911--913. ISSN 0378-4754. URL http://www.jstor.org/stable/2005304.Google ScholarGoogle ScholarCross RefCross Ref
  2. David R. Barton & Richard Zippel (1985). Polynomial Decomposition Algorithms. Journal of Symbolic Computation 1, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Raoul Blankertz (2011). Decomposition of Polynomials. Diplomarbeit, Universität Bonn, Bonn. Modified version available at http://arxiv.org/abs/1107.0687.Google ScholarGoogle Scholar
  4. Raoul Blankertz, Joachim von zur Gathen & Konstantin Ziegler (2012). Compositions and collisions at degree p2. In Proceedings of the 2012 International Symposium on Symbolic and Algebraic Computation ISSAC2012, Grenoble, France, 91--98. ACM Press, New York, USA. Full version available at http://arxiv.org/abs/1202.5810. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Bostan, G. Lecerf, B. Salvy, É. Schost & B. Wiebelt (2004). Complexity issues in bivariate polynomial factorization. In Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation ISSAC2004, Santander, Spain, 42--49. ACM Press. ISBN 1-58113-827-X. URL http://dx.doi.org/10.1145/1005285.1005294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Greg Butler (1992). An analysis of Atkinson's algorithm. ACM SIGSAM Bulletin 26(2), 1--9. ISSN 0163-5824. URL http://dx.doi.org/10.1145/130933.130935. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Michael D. Fried & R. E. MacRae (1969). On the invariance of chains of Fields. Illinois Journal of Mathematics 13, 165--171.Google ScholarGoogle ScholarCross RefCross Ref
  8. Joachim von zur Gathen (1990a). Functional Decomposition of Polynomials: the Tame Case. Journal of Symbolic Computation 9, 281--299. URL http://dx.doi.org/10.1016/S0747-7171(08)80014-4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Joachim von zur Gathen (1990b). Functional Decomposition of Polynomials: the Wild Case. Journal of Symbolic Computation 10, 437--452. URL http://dx.doi.org/10.1016/S0747-7171(08)80054-5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Joachim von zur Gathen (2009). The number of decomposable multivariate polynomials. In Abstracts of the Ninth International Conference on Finite Fields and their Applications, 21--22. Claude Shannon Institute, Dublin. URL http://www.shannoninstitute.ie/fq9/AllFq9Abstracts.pdf.Google ScholarGoogle Scholar
  11. Joachim von zur Gathen, Mark Giesbrecht & Konstantin Ziegler (2010). Composition collisions and projective polynomials. Statement of results. In Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation ISSAC2010, Munich, Germany, Stephen Watt, editor, 123--130. ACM Press. URL http://dx.doi.org/10.1145/1837934.1837962. Preprint available at http://arxiv.org/abs/1005.1087. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Mark William Giesbrecht (1988). Complexity Results on the Functional Decomposition of Polynomials. Technical Report 209/88, University of Toronto, Department of Computer Science, Toronto, Ontario, Canada. Available as http://arxiv.org/abs/1004.5433.Google ScholarGoogle Scholar
  13. Dexter Kozen & Susan Landau (1989). Polynomial Decomposition Algorithms. Journal of Symbolic Computation 7, 445--456. An earlier version was published as Technical Report 209/88, University of Toronto, Department of Computer Science, Toronto, Ontario, Canada, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. S. Landau & G. L. Miller (1985). Solvability by Radicals is in Polynomial Time. Journal of Computer and System Sciences 30, 179--208.Google ScholarGoogle ScholarCross RefCross Ref
  15. Susan Landau (1993). Finding maximal subfields. ACM SIGSAM Bulletin 27(3), 4--8. ISSN 0163-5824. URL http://dx.doi.org/10.1145/170906.170907. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Grégoire Lecerf (2007). Improved dense multivariate polynomial factorization algorithms. Journal of Symbolic Computation 42(4), 477--494. ISSN 0747-7171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Rudolf Lidl & Harald Niederreiter (1997). Finite Fields. Number 20 in Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, UK, 2nd edition. First published by Addison-Wesley, Reading MA, 1983.Google ScholarGoogle Scholar
  18. Mark van Hoeij, Jürgen Klüners & Andrew Novocin (2011). Generating subfields. In Proceedings of the 2011 International Symposium on Symbolic and Algebraic Computation ISSAC2011, San Jose CA, 345--352. ACM Press, New York, USA. ISBN 978-1-4503-0675-1. URL http://dx.doi.org/10.1145/1993886.1993937. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Helmut Wielandt (1964). Finite permutation groups. Academic Press, New York. ISBN 0-127-49656-4. Translated from the German by R. Bercov.Google ScholarGoogle Scholar
  20. Richard Zippel (1991). Rational Function Decomposition. In Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation ISSAC '91, Bonn, Germany, Stephen M. Watt, editor, 1--6. ACM Press, Bonn, Germany. ISBN 0-89791-437-6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Richard Zippel (1996). Functional Decomposition. online. URL http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3154. Last visited 31 May 2013.Google ScholarGoogle Scholar

Index Terms

  1. A polynomial time algorithm for computing all minimal decompositions of a polynomial

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Communications in Computer Algebra
            ACM Communications in Computer Algebra  Volume 48, Issue 1/2
            March/June 2014
            70 pages
            ISSN:1932-2240
            DOI:10.1145/2644288
            Issue’s Table of Contents

            Copyright © 2014 Author

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 10 July 2014

            Check for updates

            Qualifiers

            • column

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader