skip to main content
10.1145/2645791.2645803acmotherconferencesArticle/Chapter ViewAbstractPublication PagespciConference Proceedingsconference-collections
research-article

Slow Light in Photonic Crystal Waveguides as a Key Enabler for Future Optical Network Technologies

Published: 02 October 2014 Publication History

Abstract

All-optical technologies promise to alleviate bottleneck effects associated with electroptic conversions currently required in major network nodes. Nanophotonic structures such as photonic crystals may be used to manipulate light thereby adding intelligence in the optical physical layer. All-optical applications like optical buffering, optical switching, signal regeneration etc. are only a few applications that can be considered in future network nodes with integrated photonic crystal devices. Slow light propagation, i.e. reducing the group velocity of the propagating optical signals in photonic crystal waveguides can further enhance the signal processing capabilities of nanophotonic devices. Slow light is ideal for realizing optical buffers in integrated form while at the other hand it can lead to large increase of nonlinearities. In this paper, we focus on the capabilities and restrictions of slow-light photonic crystal waveguides in a few basic all-optical applications, like optical buffering and wavelength conversion. The role of the photonic crystal structural characteristics related to the performance of slow-light all-optical functionalities is shown. Future perspective for the visualization of PCSW slow-light devices in all-optical networks is evaluated.

References

[1]
K. Kinam, "From the future Si technology perspective: Challenges and opportunities," Electron Devices Meeting (IEDM), IEEE International, vol.1.1.1, pp. 6--8 Dec. 2010.
[2]
W. Vereecken, W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, P. Demeester, "Power consumption in telecommunication networks: overview and reduction strategies," Communications Magazine IEEE, vol.49, pp.62--69, June 2011.
[3]
T. Baba, "Slow light in photonic crystals," Nature Photonics 2, 465--473 (2008).
[4]
T. F. Krauss, "Why do we need slow light?," Nature Photonics 2, 448--450 (2008).
[5]
L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594--598 (18 February 1999).
[6]
J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. Princeton, NJ: Princeton Univ. Press, 2008.
[7]
A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, M. Sorel, "Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison," Photonics Journal, IEEE, vol.2, pp.181--194, (2010).
[8]
S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B, vol. 62, pp. 8212--8222, (2000).
[9]
Y. A. Vlasov, M. O'Boyle, H. F. Hamann1 and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature, vol. 438, pp. 65--69 (2005).
[10]
Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express, vol. 15, pp. 16604--16644 (2007).
[11]
R. Salem, M. A. Foster, A. C. Turner, D. F. Geragthy, M. Lipson, and A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nat. Photonics, vol. 2, pp. 35--38 (2007).
[12]
S. Rawal, R. K. Sinha, and R. M. De La Rue, "Silicon-on-insulator photonic miniature devices with slow light enhanced third-order nonlinearities," J. Nanophoton., vol. 6, 063504 (2012).
[13]
B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O'Faolain, T. F. Krauss, and B. J. Eggleton, "Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in a engineered silicon photonic crystal waveguide," Opt. Lett., vol. 36, pp.1728--1730 (2011).
[14]
F. Morichetti, A. Canciamilla, C. Ferrari, A. Samarelli, M. Sorel, and A. Melloni, "Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion," Nat. Commun., vol. 2, 296 (2011).
[15]
E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of linedefect waveguides in photonic crystal slabs," Phys. Rev. B, vol. 72, 161318 (2005).
[16]
P. Kanakis, T. Kamalakis and T. Sphicopoulos, "Numerical analysis of soliton propagation in photonic crystal slab waveguides for signal processing applications," JOSA B, vol. 29, pp. 2787--2796 (2012).
[17]
C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré and U. Oesterle, "Low-loss channel waveguides with two-dimensional photonic crystal boundaries," App. Phys. Lett., vol. 77, pp. 2813--2815 (2000).
[18]
L. O'Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, "Loss engineered slow light waveguides," Opt. Express, vol. 18, pp. 27627--27638 (2010).
[19]
P. Kanakis, T. Kamalakis, and T. Sphicopoulos, "Optimization of the storage capacity of slow light photonic crystal waveguides," Opt. Lett., vol. 37, pp. 4585--4587 (2012).
[20]
Agrawal, G. P., {Non-Linear Fiber Optics}, 4th edition (Academic 2007).
[21]
J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Exp., vol. 16, pp. 6227--6232 (2008).
[22]
F.-C. Leng, W.-Y. Liang, B. Liu, T.-B. Wang, and H.-Z. Wang, "Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides," Opt. Exp., vol. 18, pp. 5707--5712 (2010).
[23]
K. Kitayama, T. Kubo, R. Takahashi, S. Matsuo, S. Arakawa, M. Murata, M. Notomi, K. Nozaki, K. Kato, "All-optical RAM buffer subsystem demonstrator," Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, vol. 1, pp. 6--10 (2011).
[24]
L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, T. F. Krauss, "Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals," Photonics Journal, IEEE, vol.2, pp.404--414 (2010).
[25]
B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O'Faolain, T. F. Krauss, B. J. Eggleton, "Ultracompact 160 Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide.," Opt Lett., vol. 1, pp. 1728--1730 (2011).
[26]
C. Husko, T. D. Vo, B. Corcoran, J. Li, T. F. Krauss, B. J. Eggleton, "Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide.," Opt Express., vol. 19, pp. 20681--20690 (2011).
[27]
A. Melloni, A. Canciamilla, C. Ferrari, F. Morichetti, L. O'Faolain, T. F. Krauss, R. De La Rue, A. Samarelli, M. Sorel, "Tunable Delay Lines in Silicon Photonics: Coupled Resonators and Photonic Crystals, a Comparison," Photonics Journal, IEEE, vol.2, pp.181,194, (2010).
[28]
L. Dai, C. Jiang, "Photonic crystal slow light waveguides with large delay--bandwidth product," Appl. Phys. B, vol. 95, pp 105--111, (2009).
[29]
J. Liang, L. Ren, M. Yun, X. Han, and X. Wang, "Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide," J. Appl. Phys., vol. 110, 063103 (2011).
[30]
R. S. Tucker, K. Pei-Cheng, C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," Journal of Lightwave Technology, vol.23, pp.4046--4066, (2005).
[31]
M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, T. Roughgarden, "Part III: routers with very small buffers," ACM SIGCOMM Computer Communication Review, vol. 35, pp. 83--90 (2005).
[32]
G. Appenzeller, N. McKeown, J. Sommers, and P. Barford, "Recent results on sizing router buffers," in Proc. Network Systems Design Conf., San Diego, CA, Oct. 18-20, 2004, p. 13.
[33]
B. Zhao, A. Vishwanath, V. Sivaraman, "Performance of high-speed TCP applications in networks with very small buffers," Advanced Networks and Telecommunication Systems, 2007 First International Symposium on, vol. 1, pp.17--18, (2007)
[34]
J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, "Observation of four-wave mixing in slow-light silicon photonic crystal waveguides," Opt. Exp., vol. 18, pp. 15484--15497 (2010).
[35]
J. Li, L. O'Faolain, and T. F. Krauss, "Four-wave mixing in slow light photonic crystal waveguides with very high group index," Opt. Exp., vol. 20, pp. 17474--17479 (2012).
[36]
P. Kanakis, T. Kamalakis, and T. Sphicopoulos, "Approximate expressions for estimation of four-wave mixing efficiency in slow-light photonic crystal waveguides," JOSA B, vol. 31, pp. 366--375 (2014).
[37]
J. R. Dormand and P. J. Prince, "A family of embedded Runge-Kutta formulae," J. Comput. Appl. Math. 6, 19--26 (1980).
[38]
P. Kanakis, T. Kamalakis, and T. Sphicopoulos, "Designing slow-light photonic crystal waveguides for four-wave mixing applications," Opt. Lett., vol. 39, pp. 884--887 (2014).
[39]
M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K Moravvej-Farshi, "A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration," Opt. Exp., vol. 17, pp. 18340--18353 (2009).
[40]
D. M. Beggs, T. Kampfrath, I. Rey, T. F. Krauss, L. Kuipers, "Controlling and switching slow light in photonic crystal waveguides," Transparent Optical Networks (ICTON), 2011 13th International Conference on, vol.1, pp. 26--30 June 2011.

Index Terms

  1. Slow Light in Photonic Crystal Waveguides as a Key Enabler for Future Optical Network Technologies

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        PCI '14: Proceedings of the 18th Panhellenic Conference on Informatics
        October 2014
        355 pages
        ISBN:9781450328975
        DOI:10.1145/2645791
        • General Chairs:
        • Katsikas Sokratis,
        • Hatzopoulos Michael,
        • Apostolopoulos Theodoros,
        • Anagnostopoulos Dimosthenis,
        • Program Chairs:
        • Carayiannis Elias,
        • Varvarigou Theodora,
        • Nikolaidou Mara
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        In-Cooperation

        • Greek Com Soc: Greek Computer Society
        • Univ. of Piraeus: University of Piraeus
        • National and Kapodistrian University of Athens: National and Kapodistrian University of Athens
        • Athens U of Econ & Business: Athens University of Economics and Business

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 02 October 2014

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. All-optical networks
        2. photonic crystals
        3. slow-light

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        PCI '14

        Acceptance Rates

        PCI '14 Paper Acceptance Rate 51 of 102 submissions, 50%;
        Overall Acceptance Rate 190 of 390 submissions, 49%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 75
          Total Downloads
        • Downloads (Last 12 months)1
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 03 Mar 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media