skip to main content
research-article

Anisotropic simplicial meshing using local convex functions

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

We present a novel method to generate high-quality simplicial meshes with specified anisotropy. Given a surface or volumetric domain equipped with a Riemannian metric that encodes the desired anisotropy, we transform the problem to one of functional approximation. We construct a convex function over each mesh simplex whose Hessian locally matches the Riemannian metric, and iteratively adapt vertex positions and mesh connectivity to minimize the difference between the target convex functions and their piecewise-linear interpolation over the mesh. Our method generalizes optimal Delaunay triangulation and leads to a simple and efficient algorithm. We demonstrate its quality and speed compared to state-of-the-art methods on a variety of domains and metrics.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. (SIGGRAPH) 24, 3, 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Amari, S.-I., and Armstrong, J. 2014. Curvature of Hessian mnifolds. Differential Geom. Appl., 33, 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  3. Boissonnat, J.-D., Cohen-Steiner, D., and Yvinec, M. 2008. Comparison of algorithms for anisotropic meshing and adaptive refinement. Tech. rep., INRIA. ACS-TR-362603.Google ScholarGoogle Scholar
  4. Boissonnat, J.-D., Wormser, C., and Yvinec, M. 2008. Locally uniform anisotropic meshing. In SOCG, 270--277. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boissonnat, J.-D., Wormser, C., and Yvinec, M. 2011. Anisotropic Delaunay mesh generation. Tech. rep., INRIA. INRIA-00615486.Google ScholarGoogle Scholar
  6. Boissonnat, J.-D., Shi, K.-L., Tournois, J., and Yvinec, M. 2014. Anisotropic Delaunay meshes of surfaces. ACM Trans. Graph., to appear.Google ScholarGoogle Scholar
  7. Canas, G. D., and Gortler, S. J. 2011. Orphan-free anisotropic Voronoi diagrams. Discrete Comput. Geom. 46, 3, 526--541. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, L., and Holst, M. 2011. Efficient mesh optimization schemes based on optimal Delaunay triangulations. Comput. Methods in Appl. Mech. Eng. 200, 912, 967--984.Google ScholarGoogle Scholar
  9. Chen, L., and Xu, J. 2004. Optimal Delaunay triangulations. J. Comput. Math. 22, 299--308.Google ScholarGoogle Scholar
  10. Chen, L., Sun, P., and Xu, J. 2007. Optimal anisotropic meshes for minimizing interpolation errors in Lp-norm. Math. Comp. 76, 179--204.Google ScholarGoogle ScholarCross RefCross Ref
  11. Chen, L. 2004. Mesh smoothing schemes based on optimal Delaunay triangulations. In Int. Meshing Roundtable, 109--120.Google ScholarGoogle Scholar
  12. Cheng, S.-W., Dey, T. K., Ramos, E. A., and Wenger, R. 2006. Anisotropic surface meshing. In SODA, 202--211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Clark, B., Ray, N., and Jiao, X. 2012. Surface mesh optimization, adaption, and untangling with high-order accuracy. In Int. Meshing Roundtable. 385--402.Google ScholarGoogle Scholar
  14. Desbrun, M., Donaldson, R. D., and Owhadi, H. 2013. Modeling across scales: discrete geometric structures in homogenization and inverse homogenization. In Multiscale Analysis and Nonlinear Dynamics, 19--64.Google ScholarGoogle Scholar
  15. Dobrzynski, C., and Frey, P. 2008. Anisotropic Delaunay mesh adaptation for unsteady simulations. In Int. Meshing Roundtable, 177--194.Google ScholarGoogle Scholar
  16. Du, Q., and Wang, D. 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26, 3, 737--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Frey, P., and George, P.-L. 2008. Mesh Generation: Application to finite elements, 2 ed. Wiley-ISTE.Google ScholarGoogle Scholar
  18. Genz, A., and Cools, R. 2003. An adaptive numerical cubature algorithm for simplices. ACM Trans. Math. Softw. 29, 3, 297--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Goes, F. D., Memari, P., Mullen, P., and Desbrun, M. 2014. Weighted triangulations for geometry processing. ACM Trans. Graph. 33, 3, 28:1--28:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hecht, F., 1998. BAMG: Bidimensional anisotropic mesh generator. http://www.ann.jussieu.fr/hecht/ftp/bamg.Google ScholarGoogle Scholar
  21. Jiao, X., Colombi, A., Ni, X., and Hart, J. 2010. Anisotropic mesh adaptation for evolving triangulated surfaces. Eng. with Comput. 26, 4, 363--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Klingner, B. M., and Shewchuk, J. R. 2007. Agressive tetrahedral mesh improvement. In Int. Meshing Roundtable, 3--23.Google ScholarGoogle Scholar
  23. Labelle, F., and Shewchuk, J. R. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In SOCG, 191--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lévy, B., and Bonneel, N. 2012. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In Int. Meshing Roundtable, 349--366.Google ScholarGoogle Scholar
  25. Lévy, B., and Liu, Y. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. (SIGGRAPH) 29, 4, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Li, Y., Liu, Y., and Wang, W. 2014. Planar hexagonal meshing for architecture. IEEE. T. Vis. Comput. Gr., to appear.Google ScholarGoogle Scholar
  27. Liu, Y., Pan, H., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. (SIGGRAPH) 32, 4, 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. ACM Trans. Graph. (SIGGRAPH) 30, 4, 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Panozzo, D., Puppo, E., Tarini, M., and Sorkine-Hornung, O. 2014. Frame fields: anisotropic and non-orthogonal cross fields. ACM Trans. Graph. (SIGGRAPH) 33, 4, 134:1--134:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Persson, P.-O., and Strang, G. 2004. A simple mesh generator in MATLAB. SIAM Rev. 46, 329--345.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rusinkiewicz, S. 2004. Estimating curvatures and their derivatives on triangle meshes. In 3DPVT, 486--493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shewchuk, J. R., 2002. What is a good linear finite element? Interpolation, conditioning, anisotropy, and quality measures.Google ScholarGoogle Scholar
  33. Shimada, K., Yamada, A., and Itoh, T. 2000. Anisotropic triangulation of parametric surfaces via close packing of ellipsoids. Int. J. Comput. Geom. Ap. 10, 4, 417--440.Google ScholarGoogle ScholarCross RefCross Ref
  34. Thompson, J. F., Soni, B. K., and Weatherill, N. P., Eds. 1998. Handbook of Grid Generation. Wiley-ISTE.Google ScholarGoogle Scholar
  35. Tournois, J., Srinivasan, R., and Alliez, P. 2009. Perturbing slivers in 3D Delaunay meshes. In Int. Meshing Roundtable, 157--173.Google ScholarGoogle Scholar
  36. Tournois, J., Wormser, C., Alliez, P., and Desbrun, M. 2009. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans. Graph. (SIGGRAPH) 28, 3, 75:1--75:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Valette, S., Chassery, J.-M., and Prost, R. 2008. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE. T. Vis. Comput. Gr. 14, 2, 369--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Yan, D.-M., Lévy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput. Graph. FORUM 28, 5, 1445--1454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Zhong, Z., Guo, X., Wang, W., Lévy, B., Sun, F., Liu, Y., and Mao, W. 2013. Particle-based anisotropic surface meshing. ACM Trans. Graph. (SIGGRAPH) 32, 4, 99:1--99:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zienkiewicz, O. C., Taylor, R. L., and Zhu, J. 2005. The Finite Element Method: Its Basis and Fundamentals, 6 ed. Butterworth-Heinemann.Google ScholarGoogle Scholar

Index Terms

  1. Anisotropic simplicial meshing using local convex functions

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 33, Issue 6
        November 2014
        704 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2661229
        Issue’s Table of Contents

        Copyright © 2014 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 November 2014
        Published in tog Volume 33, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader