skip to main content
research-article

Slippage-free background replacement for hand-held video

Published:19 November 2014Publication History
Skip Abstract Section

Abstract

We introduce a method for replacing the background in a video of a moving foreground subject, when both the source video capturing the subject, and the target video capturing the new background scene, are natural videos, casually captured using a freely moving hand-held camera. We assume that the foreground subject has already been extracted, and focus on the challenging task of generating a video with a new background, such that the new background motion appears compatible with the original one. Failure to match the motion results in disturbing slippage or moonwalk artifacts, where the subject's feet appear to slide or slip over the ground. While matching the motion across the entire frame is impossible for scenes with differing geometry, we aim to match the local motion of the ground in the vicinity of the subject. This is achieved by reordering and warping the available target background frames in a manner that optimizes a suitably designed objective function.

References

  1. Agarwala, A., Hertzmann, A., Salesin, D. H., and Seitz, S. M. 2004. Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph. 23, 3 (Aug.), 584--591. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarwala, A., Zheng, K. C., Pal, C., Agrawala, M., Cohen, M., Curless, B., Salesin, D., and Szeliski, R. 2005. Panoramic video textures. ACM Trans. Graph. 24, 3 (July), 821--827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bai, X., Wang, J., Simons, D., and Sapiro, G. 2009. Video SnapCut: Robust video object cutout using localized classifiers. ACM Trans. Graph. 28, 3 (July), 70:1--70:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chuang, Y.-Y., Agarwala, A., Curless, B., Salesin, D. H., and Szeliski, R. 2002. Video matting of complex scenes. ACM Trans. Graph. 21, 3 (July), 243--248. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Farbman, Z., and Lischinski, D. 2011. Tonal stabilization of video. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011) 30, 4, 89:1--89:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Flagg, M., Nakazawa, A., Zhang, Q., Kang, S. B., Ryu, Y. K., Essa, I., and Rehg, J. M. 2009. Human video textures. In Proceedings of the 2009 symposium on Interactive 3D graphics and games, ACM, 199--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Germann, M., Popa, T., Keiser, R., Ziegler, R., and Gross, M. 2012. Novel-view synthesis of outdoor sport events using an adaptive view-dependent geometry. Comp. Graph. Forum 31, 2pt1 (May), 325--333. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gleicher, M. L., and Liu, F. 2008. Re-cinematography: Improving the camerawork of casual video. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) 5, 1, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Goldstein, A., and Fattal, R. 2012. Video stabilization using epipolar geometry. ACM Trans. Graph. 31, 5, 126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grundmann, M., Kwatra, V., and Essa, I. 2011. Auto-directed video stabilization with robust l1 optimal camera paths. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE, 225--232. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hartley, R., and Zisserman, A. 2004. Multiple view geometry in computer vision, 2nd ed. Cambridge Univ Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Liu, F., Gleicher, M., Jin, H., and Agarwala, A. 2009. Content-preserving warps for 3D video stabilization. ACM Trans. Graph. 28, 3 (July), 44:1--44:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Liu, F., Gleicher, M., Wang, J., Jin, H., and Agarwala, A. 2011. Subspace video stabilization. ACM Trans. Graph. 30, 1, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Liu, S., Yuan, L., Tan, P., and Sun, J. 2013. Bundled camera paths for video stabilization. ACM Trans. Graph. 32, 4, 78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Okabe, M., Anjyor, K., and Onai, R. 2011. Creating fluid animation from a single image using video database. Computer Graphics Forum 30, 7, 1973--1982.Google ScholarGoogle ScholarCross RefCross Ref
  16. Sand, P., and Teller, S. 2004. Video matching. ACM Trans. Graph. 23, 3, 592--599. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In Proc. 27th annual conference on Computer Graphics and interactive techniques, ACM Press/Addison-Wesley, 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Smith, A. R., and Blinn, J. F. 1996. Blue screen matting. In Proc. 23rd annual conference on Computer Graphics and interactive techniques, ACM, 259--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Steedly, D., Pal, C., and Szeliski, R. 2005. Efficiently registering video into panoramic mosaics. In Proc. ICCV '05, vol. 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Stich, T., Linz, C., Albuquerque, G., and Magnor, M. 2008. View and time interpolation in image space. Comp. Graph. Forum 27, 7, 1781--1787.Google ScholarGoogle ScholarCross RefCross Ref
  21. Sunkavalli, K., Johnson, M. K., Matusik, W., and Pfister, H. 2010. Multi-scale image harmonization. ACM Trans. Graphics 29, 4, 125:1--125:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Wang, J., Bhat, P., Colburn, R. A., Agrawala, M., and Cohen, M. F. 2005. Interactive video cutout. ACM Trans. Graph. 24, 3 (July), 585--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Xu, F., Liu, Y., Stoll, C., Tompkin, J., Bharaj, G., Dai, Q., Seidel, H.-P., Kautz, J., and Theobalt, C. 2011. Video-based characters: Creating new human performances from a multi-view video database. ACM Trans. Graph. 30, 4 (July), 32:1--32:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Zhang, Y., Correa, C. D., and Ma, K.-L. 2011. Graph-based fire synthesis. In Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Slippage-free background replacement for hand-held video

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 33, Issue 6
              November 2014
              704 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/2661229
              Issue’s Table of Contents

              Copyright © 2014 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 19 November 2014
              Published in tog Volume 33, Issue 6

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader