skip to main content
10.1145/2663712.2666194acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

Towards Named-Entity-based Similarity Measures: Challenges and Opportunities

Published: 07 November 2014 Publication History

Abstract

In this paper, we investigate challenges related to the adaptation of similarity measures used in the field of Information Retrieval to work with semantic features, i.e. Named Entities. The challenges to consider are numerous, including the accuracy of the annotation process, the adapted similarity measures, the quality of the Linked Data referred to, and the efficient access to the Semantic Web. We discuss each challenge in detail, as well as possible ways to tackle them.

References

[1]
M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann. Crowdsourcing linked data quality assessment. In The Semantic Web--ISWC 2013, pages 260--276. Springer, 2013.
[2]
C. Beecks, S. Kirchhoff, and T. Seidl. Signature matching distance for content-based image retrieval. In ICMR, pages 41--48, 2013.
[3]
C. Beecks, S. Kirchhoff, and T. Seidl. On stability of signature-based similarity measures for content-based image retrieval. Multimedia Tools Appl., 71(1):349--362, 2014.
[4]
C. Beecks, M. S. Uysal, and T. Seidl. A comparative study of similarity measures for content-based multimedia retrieval. In ICME, pages 1552--1557, 2010.
[5]
C. Beecks, M. S. Uysal, and T. Seidl. Signature quadratic form distance. In CIVR, pages 438--445, 2010.
[6]
C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. International journal on semantic web and information systems, 5(3):1--22, 2009.
[7]
J. Dalton, L. Dietz, and J. Allan. Entity query feature expansion using knowledge base links. In Proceedings of the 37th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Australia. ACM, 2014.
[8]
D. Damljanovic and K. Bontcheva. Named entity disambiguation using linked data. In Proceedings of the 9th Extended Semantic Web Conference, 2012.
[9]
T. De Nies, W. De Neve, E. Mannens, and R. Van de Walle. Ghent University-iMinds at MediaEval 2013: An Unsupervised Named Entity-based Similarity Measure for Search and Hyperlinking. In MediaEval 2013 Workshop, Barcelona, Spain, 2013.
[10]
M. Eskevich, G. J. Jones, R. Aly, R. J. Ordelman, S. Chen, D. Nadeem, C. Guinaudeau, G. Gravier, P. Sebillot, T. De Nies, et al. Multimedia information seeking through search and hyperlinking. In 3rd ACM conference on International conference on multimedia retrieval (ICMR), pages 287--294. ACM, 2013.
[11]
F. Godin, T. De Nies, C. Beecks, L. De Vocht, W. De Neve, E. Mannens, T. Seidl, and R. Van de Walle. The Normalized Freebase Distance. In 11th Extended Semantic Web Conference, 2014.
[12]
F. Goossen, W. IJntema, F. Frasincar, F. Hogenboom, and U. Kaymak. News personalization using the CF-IDF semantic recommender. In Proceedings of the International Conference on Web Intelligence, Mining and Semantics, page 10. ACM, 2011.
[13]
A. Hasnain, M. Al-Bakri, L. Costabello, Z. Cong, I. Davis, T. Heath, et al. Spamming in linked data. In Third International Workshop on Consuming Linked Data (COLD2012), 2012.
[14]
M. A. Khalid, V. Jijkoun, and M. De Rijke. The impact of named entity normalization on information retrieval for question answering. In Advances in Information Retrieval, pages 705--710. Springer, 2008.
[15]
D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and A. Zaveri. Test-driven evaluation of linked data quality. In Proceedings of the 23rd international conference on World Wide Web, pages 747--758. International World Wide Web Conferences Steering Committee, 2014.
[16]
Y. Li, C. Wang, F. Han, J. Han, D. Roth, and X. Yan. Mining evidences for named entity disambiguation. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1070--1078. ACM, 2013.
[17]
Microsoft Research. Entity Recognition and Disambiguation Challenge (ERD 2014). http://web-ngram.research.microsoft.com/ERD2014/.
[18]
S. Montalvo, V. Fresno, and R. Martinez. NESM: A named entity based proximity measure for multilingual news clustering. Procesamiento del lenguaje natural, 48:81--88, 2012.
[19]
A. Passant. Measuring Semantic Distance on Linking Data and Using it for Resources Recommendations. In AAAI Spring Symposium: Linked Data Meets Artificial Intelligence, 2010.
[20]
R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on semantic nets. Systems, Man and Cybernetics, IEEE Transactions on, 19(1):17--30, 1989.
[21]
G. Rizzo and R. Troncy. NERD: a framework for unifying named entity recognition and disambiguation extraction tools. In Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational Linguistics, pages 73--76. Association for Computational Linguistics, 2012.
[22]
Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99--121, 2000.
[23]
G. Salton and M. J. McGill. Introduction to modern information retrieval. McGraw-Hill, Inc., 1983.
[24]
K. Simonic, J. Rupnik, and P. Skraba. Missing Properties in Linked Data Datasets. lodminer.net.
[25]
S. van Hooland, M. De Wilde, R. Verborgh, T. Steiner, and R. Van de Walle. Exploring entity recognition and disambiguation for cultural heritage collections. Literary and Linguistic Computing, 2014.
[26]
R. Verborgh. The Lonesome LOD Cloud. In Proceedings of the 4th USEWOD Workshop on Usage Analysis and the Web of Data, 2014.
[27]
R. Verborgh, M. Vander Sande, P. Colpaert, S. Coppens, E. Mannens, and R. Van de Walle. Web-Scale Querying through Linked Data Fragments. In Proceedings of the 7th Workshop on Linked Data on the Web, 2014.

Cited By

View all
  • (2017)Visual Descriptors in Methods for Video HyperlinkingProceedings of the 2017 ACM on International Conference on Multimedia Retrieval10.1145/3078971.3079026(294-300)Online publication date: 6-Jun-2017
  • (2016)A Distance-Based Approach for Semantic Dissimilarity in Knowledge Graphs2016 IEEE Tenth International Conference on Semantic Computing (ICSC)10.1109/ICSC.2016.55(254-257)Online publication date: Feb-2016
  • (2016)Exploiting Multimodality in Video Hyperlinking to Improve Target DiversityMultiMedia Modeling10.1007/978-3-319-51814-5_16(185-197)Online publication date: 31-Dec-2016
  • Show More Cited By

Index Terms

  1. Towards Named-Entity-based Similarity Measures: Challenges and Opportunities

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ESAIR '14: Proceedings of the 7th International Workshop on Exploiting Semantic Annotations in Information Retrieval
    November 2014
    52 pages
    ISBN:9781450313650
    DOI:10.1145/2663712
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. semantic similarity
    2. semantic web
    3. similarity measures

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    CIKM '14
    Sponsor:

    Acceptance Rates

    ESAIR '14 Paper Acceptance Rate 11 of 15 submissions, 73%;
    Overall Acceptance Rate 35 of 55 submissions, 64%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2017)Visual Descriptors in Methods for Video HyperlinkingProceedings of the 2017 ACM on International Conference on Multimedia Retrieval10.1145/3078971.3079026(294-300)Online publication date: 6-Jun-2017
    • (2016)A Distance-Based Approach for Semantic Dissimilarity in Knowledge Graphs2016 IEEE Tenth International Conference on Semantic Computing (ICSC)10.1109/ICSC.2016.55(254-257)Online publication date: Feb-2016
    • (2016)Exploiting Multimodality in Video Hyperlinking to Improve Target DiversityMultiMedia Modeling10.1007/978-3-319-51814-5_16(185-197)Online publication date: 31-Dec-2016
    • (2016)Normalized Semantic Web DistanceProceedings of the 13th International Conference on The Semantic Web. Latest Advances and New Domains - Volume 967810.1007/978-3-319-34129-3_5(69-84)Online publication date: 29-May-2016
    • (2015)Hierarchical Topic Models for Language-based Video HyperlinkingProceedings of the Third Edition Workshop on Speech, Language & Audio in Multimedia10.1145/2802558.2814642(31-34)Online publication date: 30-Oct-2015
    • (2015)Report on the Seventh Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR'14)ACM SIGIR Forum10.1145/2795403.279541249:1(27-34)Online publication date: 23-Jun-2015
    • (2015)Author Profile Enrichment for Cross-Linking Digital LibrariesResearch and Advanced Technology for Digital Libraries10.1007/978-3-319-24592-8_10(124-136)Online publication date: 28-Nov-2015
    • (2014)Seventh Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR'14)Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management10.1145/2661829.2663539(2094-2095)Online publication date: 3-Nov-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media