skip to main content
10.1145/2668024.2668025acmconferencesArticle/Chapter ViewAbstractPublication Pagesicmi-mlmiConference Proceedingsconference-collections
research-article

Continuous Mapping of Personality Traits: A Novel Challenge and Failure Conditions

Published: 12 November 2014 Publication History

Abstract

This paper presents our contribution to ACM ICMI 2014 Mapping Personality Traits Challenge and Workshop. The proposed system utilizes Extreme Learning Machines (ELM) and Canonical Correlation Analysis (CCA) for modeling acoustic features. The ELM paradigm is proposed as a fast and accurate alternative to train Single Layer Feed-forward Networks (SLFN) and Support Vector Machines (SVM). Benefiting from the fast learning advantage of ELM, we carry out extensive tests on the data using moderate computational resources. We further investigate the suitability of a recently proposed feature selection approach to prune the acoustic features, as well as mean smoothing of predictions. In our study, Kernel ELM performed better than basic ELM. Though an average (6-fold cross-validation) Pearson's correlation of 0.642 is reached on the training and validation sets, the overall correlation obtained on the sequestered test set is very low. The results indicate the difficulty of the problem.

References

[1]
E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.
[2]
G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep canonical correlation analysis. In Proc. of the 30th Intl. Conference on Machine Learning, pages 1247--1255, Atlanta, Georgia, USA, 2013.
[3]
P. L. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. Information Theory, IEEE Transactions on, 44(2):525--536, 1998.
[4]
E. Cambria, G.-B. Huang, L. L. C. Kasun, H. Zhou, C.-M. Vong, J. Lin, J. Yin, Z. Cai, Q. Liu, K. Li, et al. Extreme learning machines. IEEE Intelligent Systems, 28(6):30--59, 2013.
[5]
O. Celiktutan, F. Eyben, E. Sariyanidi, H. Gunes, and B. Schuller. Maptraits 2014: The first audio/visual mapping personality traits challenge. In Proc. of the 16th ACM Intl. Conf. on Multimodal Interaction (ICMI 2014). ACM, 2014.
[6]
A. Dhall, R. Goecke, J. Joshi, K. Sikka, and T. Gedeon. Emotion recognition in the wild challenge 2014: Baseline, data and protocol. In Proc. of the 16th ACM Intl. Conf. on Multimodal Interaction (ICMI 2014). ACM, 2014.
[7]
A. Dhall, R. Goecke, J. Joshi, M. Wagner, and T. Gedeon. Emotion recognition in the wild challenge 2013. In Proc. of the 15th ACM Intl. Conf. on Multimodal Interaction (ICMI 2013), pages 509--516. ACM, 2013.
[8]
F. Eyben, F. Weninger, and B. Schuller. Affect recognition in real-life acoustic conditions-a new perspective on feature selection. In Proc. INTERSPEECH 2013, pages 2044--2048, Lyon, France, August 2013. ISCA, ISCA.
[9]
F. Eyben, M. Wöllmer, and B. Schuller. Opensmile: the munich versatile and fast open-source audio feature extractor. In Proc. of the intl. conf. on Multimedia, pages 1459--1462. ACM, 2010.
[10]
H. Gardner. Frames of mind: The theory of multiple intelligences. Basic books, 1985.
[11]
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639--2664, 2004.
[12]
H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321--377, 1936.
[13]
G.-B. Huang, D. H. Wang, and Y. Lan. Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2(2):107--122, 2011.
[14]
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme learning machine for regression and multiclass classification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(2):513--529, 2012.
[15]
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 985--990. IEEE, 2004.
[16]
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme learning machine: theory and applications. Neurocomputing, 70(1):489--501, 2006.
[17]
H. Kaya, F. Eyben, A. A. Salah, and B. W. Schuller. CCA Based Feature Selection with Application to Continuous Depression Recognition from Acoustic Speech Features. In Proc. IEEE Intl. Conference on Acoustics, Speech, and Signal Processing (ICASSP 2014), pages 3757--3761, 2014.
[18]
H. Kaya, F. Çilli, and A. A. Salah. Ensemble cca for continuous emotion prediction. In Proc. of the 4th ACM Intl. Workshop on Audio/Visual Emotion Challenge, AVEC '14, 2014.
[19]
H. Kaya and A. A. Salah. Combining modality-specific extreme learning machines for emotion recognition in the wild. In Proc. of the 16th ACM Intl. Conf. on Multimodal Interaction (ICMI 2014). ACM, 2014.
[20]
H. Kaya and A. A. Salah. Eyes whisper depression: A cca based multimodal approach. In Proc. of the 22nd Intl. Conf. on Multimedia, ACM MM '14, Orlando, Florida, USA, 2014. ACM.
[21]
H. Kaya, T. Özkaptan, A. A. Salah, and S. F. Gürgen. Canonical Correlation Analysis and Local Fisher Discriminant Analysis based Multi-View Acoustic Feature Reduction for Physical Load Prediction. In Proc. INTERSPEECH 2014, Singapore, Sep 2014. ISCA, ISCA.
[22]
G. McKeown, M. Valstar, R. Cowie, M. Pantic, and M. Schroder. The semaine database: Annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans. on Affective Computing, 3(1):5--17, 2012.
[23]
B. P. Motichande. A graphical user interface for continuous annotation of non-verbal signals.
[24]
C. R. Rao and S. K. Mitra. Generalized inverse of matrices and its applications, volume 7. Wiley New York, 1971.
[25]
B. Schuller, S. Steidl, and A. Batliner. The Interspeech 2009 Emotion Challenge. In Proc. INTERSPEECH 2009, 10th Annual Conference of the Intl. Speech Communication Association, pages 312--315, Brighton, UK, September 2009. ISCA, ISCA.
[26]
B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli, F. Burkhardt, R. van Son, F. Weninger, F. Eyben, T. Bocklet, G. Mohammadi, and B. Weiss. The INTERSPEECH 2012 Speaker Trait Challenge. In Proc. INTERSPEECH 2012, Portland, OR, USA, September 2012. ISCA.
[27]
B. Schuller, S. Steidl, A. Batliner, E. Nöth, A. Vinciarelli, F. Burkhardt, R. van Son, F. Weninger, F. Eyben, T. Bocklet, G. Mohammadi, and B. Weiss. A Survey on Perceived Speaker Traits: Personality, Likability, Pathology, and the First Challenge. Computer Speech and Language, Special Issue on Next Generation Computational Paralinguistics, 2014.
[28]
B. Schuller, S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi, M. Mortillaro, H. Salamin, A. Polychroniou, F. Valente, and S. Kim. The INTERSPEECH 2013 Computational Paralinguistics Challenge: Social Signals, Conflict, Emotion, Autism. In Proc. INTERSPEECH 2013, pages 148--152, Lyon, France, August 2013. ISCA, ISCA.
[29]
B. Schuller, M. Valstar, F. Eyben, R. Cowie, and M. Pantic. AVEC 2012 - The Continuous Audio/Visual Emotion Challenge. In L.-P. Morency, D. Bohus, H. K. Aghajan, J. Cassell, A. Nijholt, and J. Epps, editors, Proc. of the 14th ACM Intl. Conference on Multimodal Interaction, ICMI, pages 449--456, Santa Monica, CA, October 2012. ACM.
[30]
M. Sugiyama. Local fisher discriminant analysis for supervised dimensionality reduction. In Proc. of the 23rd Intl. Conference on Machine Learning, ICML '06, pages 905--912, New York, NY, USA, 2006. ACM.
[31]
J. A. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural processing letters, 9(3):293--300, 1999.
[32]
M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski, R. Cowie, and M. Pantic. AVEC 2014 - 3D Dimensional Affect and Depression Recognition Challenge. In Proc. of the 4th ACM Intl. Workshop on Audio/Visual Emotion Challenge, AVEC '14, 2014.
[33]
M. Valstar, B. Schuller, K. Smith, F. Eyben, B. Jiang, S. Bilakhia, S. Schnieder, R. Cowie, and M. Pantic. AVEC 2013 - The Continuous Audio/Visual Emotion and Depression Recognition Challenge. In Proc. of the 3rd ACM Intl. Workshop on Audio/Visual Emotion Challenge, AVEC '13, pages 3--10, 2013.
[34]
L. S. Vygotsky. Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press, 1978.

Cited By

View all
  • (2022)First Impressions: A Survey on Vision-Based Apparent Personality Trait AnalysisIEEE Transactions on Affective Computing10.1109/TAFFC.2019.293005813:1(75-95)Online publication date: 1-Jan-2022
  • (2018)Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview DecisionsExplainable and Interpretable Models in Computer Vision and Machine Learning10.1007/978-3-319-98131-4_10(255-275)Online publication date: 30-Nov-2018
  • (2017)EditorialIEEE Transactions on Affective Computing10.1109/TAFFC.2017.26628588:1(1-2)Online publication date: 1-Jan-2017
  • Show More Cited By

Index Terms

  1. Continuous Mapping of Personality Traits: A Novel Challenge and Failure Conditions

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MAPTRAITS '14: Proceedings of the 2014 Workshop on Mapping Personality Traits Challenge and Workshop
    November 2014
    38 pages
    ISBN:9781450339568
    DOI:10.1145/2668024
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. acoustic affect prediction
    2. affective computing
    3. cca
    4. extreme learning machines
    5. feature extraction
    6. personality traits

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ICMI '14
    Sponsor:

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)First Impressions: A Survey on Vision-Based Apparent Personality Trait AnalysisIEEE Transactions on Affective Computing10.1109/TAFFC.2019.293005813:1(75-95)Online publication date: 1-Jan-2022
    • (2018)Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview DecisionsExplainable and Interpretable Models in Computer Vision and Machine Learning10.1007/978-3-319-98131-4_10(255-275)Online publication date: 30-Nov-2018
    • (2017)EditorialIEEE Transactions on Affective Computing10.1109/TAFFC.2017.26628588:1(1-2)Online publication date: 1-Jan-2017
    • (2017)Automatic Prediction of Impressions in Time and across Varying ContextIEEE Transactions on Affective Computing10.1109/TAFFC.2015.25134018:1(29-42)Online publication date: 1-Jan-2017
    • (2017)Multi-modal Score Fusion and Decision Trees for Explainable Automatic Job Candidate Screening from Video CVs2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)10.1109/CVPRW.2017.210(1651-1659)Online publication date: Jul-2017
    • (2016)Multimodal fusion of audio, scene, and face features for first impression estimation2016 23rd International Conference on Pattern Recognition (ICPR)10.1109/ICPR.2016.7899605(43-48)Online publication date: Dec-2016
    • (2016)First Impressions - Predicting User Personality from Twitter Profile ImagesHuman Behavior Understanding10.1007/978-3-319-46843-3_10(148-158)Online publication date: 22-Sep-2016
    • (2015)Recognition of curiosity using eye movement analysisAdjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers10.1145/2800835.2800910(185-188)Online publication date: 7-Sep-2015

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media