skip to main content
10.1145/2668064.2668086acmconferencesArticle/Chapter ViewAbstractPublication PagesmigConference Proceedingsconference-collections
research-article

Molecular tetris: crowdsourcing molecular docking using path-planning and haptic devices

Published:06 November 2014Publication History

ABSTRACT

Many biological processes, including immune recognition, enzyme catalysis, and molecular signaling, which is still an open problem in biological sciences. We present Molecular Tetris, a game in which a player can explore the binding between a protein receptor and ligand. This exploration is similar to the game Tetris with atomic forces guiding best fits between shapes. This game will be utilized for crowdsourced haptic-guided motion planning. Haptic touch devices enable users to feel the interactions of two molecules as they move the ligand into an appropriate binding site on the receptor. We demonstrate the method on a critical piece of human immune response, ligand binding to a Major Histocompatibility Complex (MHC) molecule. Through multiple runs by our users, we construct a global roadmap that finds low energy paths to molecular docking sites. These paths are comparable to a highly-biased roadmap generated by Gaussian sampling around the known bound state. Our users are able to find low energy paths with both a specialized force-feedback device and a commodity game console controller.

References

  1. Adamson, T., Baxter, J., Manavi, K., Jacobson, B., and Tapia, L. 2014. Crowdsourced molecular docking using path-planning and haptic devices. In Workshop on Robotics Methods for Structural and Dynamic Modeling of Molecular Systems, RSS 2014.Google ScholarGoogle Scholar
  2. Al-Bluwi, I., Siméon, T., and Cortés, J. 2012. Motion planning algorithms for molecular simulations: A survey. Computer Science Review 6, 4, 125--143. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Amato, N. M., and Song, G. 2002. Using motion planning to study protein folding pathways. JCB 9, 2, 149--168. Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bayazit, O. B., Song, G., and Amato, N. M. 2001. Ligand binding with OBPRM and user input. In IEEE Int. Conf. on Rob. and Auto., 954--959.Google ScholarGoogle Scholar
  5. Beberg, A., Ensign, D., Jayachandran, G., Khaliq, S., and Pande, V. 2009. Folding@home: Lessons from eight years of volunteer distributed computing. In Parallel Distributed Processing, 2009. IEEE International Symposium on, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bivall, P., Ainsworth, S., and Tibell, L. A. 2011. Do haptic representations help complex molecular learning? Wiley Periodicals, Inc. Sci. Ed. 95 (March), 700--719.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bolopion, A., Cagneau, B., Redon, S., and Régnier, S. 2010. Comparing position and force control for interactive molecular simulators with haptic feedback. Journal of Molecular Graphics and Modelling 29, 2, 280--289.Google ScholarGoogle ScholarCross RefCross Ref
  8. Borbulevych, O., Piepenbrink, K., Gloor, B., Scott, D., Sommese, R., Cole, D., Sewell, A., and Baker, B. 2009. T cell receptor cross-reactivity directed by antigen-dependant tuning of peptide-MHC molecular flexibility. Immunity 31, 885--896.Google ScholarGoogle ScholarCross RefCross Ref
  9. Chen, B. Y., and Honig, B. 2010. VASP: A volumetric analysis of surface properties yields insights into protein-ligand binding specificity. PLoS Comput Biol 6, 8 (8), e1000881.Google ScholarGoogle Scholar
  10. ClauBen, H., Buning, C., Rarey, M., and Lengauer, T. 2001. FlexE: Efficient molecular docking considering protein structure variations. Journal of Molecular Biology 308, 2, 377--395.Google ScholarGoogle ScholarCross RefCross Ref
  11. Cortés, J., Siméon, T., Ruiz de Angulo, V., Guieysse, D., Remaud-Siméon, M., and Tran, V. 2005. A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics (Oxford, England) 21 Suppl 1, i116--i125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Daunay, B., Micaelli, A., and Regnier, S. 2007. Energy-field reconstruction for haptic-based molecular docking using energy minimization processes. Int. Conf. on Intelligent Robots and Systems IEEE RSJ, 2704--2709.Google ScholarGoogle Scholar
  13. Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cielplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., and Kollman, P. 2003. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Wiley Periodicals, Inc. J. Comput. Chem. 24 (July), 1999--2013.Google ScholarGoogle ScholarCross RefCross Ref
  14. He, X., and Chen, Y. 2009. Haptic-aided robot path planning based on virtual tele-operation. Robotics and Computer-Integrated Manufacturing 25, 4--5, 792--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hou, X., and Sourina, O. 2011. Six degree-of-freedom haptic rendering for biomolecular docking. In Transactions on Computational Science XII, vol. 6670. 98--117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hou, X., Sourina, O., and Klimenko, S. 2014. Visual haptic-based collaborative molecular docking. In The 15th International Conference on Biomedical Engineering, vol. 43. 360--363.Google ScholarGoogle Scholar
  17. Huang, S.-Y., and Zou, X. 2010. Advances and challenges in protein-ligand docking. International Journal of Molecular Sciences 11, 8, 3016--3034.Google ScholarGoogle ScholarCross RefCross Ref
  18. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. 1997. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267, 3, 727--748.Google ScholarGoogle ScholarCross RefCross Ref
  19. Khatib, F., Cooper, S., Tyka, M. D., Xu, K., Makedon, I., Popovic, Z., and Baker, D. 2011. Algorithm discovery by protein folding game players. Proceedings of the National Academy of Sciences.Google ScholarGoogle Scholar
  20. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. 1982. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology 161, 2, 269--288.Google ScholarGoogle ScholarCross RefCross Ref
  21. Lawitzky, M., Medina, J., Lee, D., and Hirche, S. 2012. Feedback motion planning and learning from demonstration in physical robotic assistance: differences and synergies. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 3646--3652.Google ScholarGoogle Scholar
  22. Meiler, J., and Baker, D. 2006. Rosettaligand: Protein-small molecule docking with full side-chain flexibility. Proteins: Structure, Function, and Bioinformatics 65, 3, 538--548.Google ScholarGoogle ScholarCross RefCross Ref
  23. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., and Olson, A. J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30, 16, 2785--2791.Google ScholarGoogle ScholarCross RefCross Ref
  24. Moustakas, D. T., Lang, P. T., Pegg, S., Pettersen, E., Kuntz, I. D., Brooijmans, N., and Rizzo, R. C. 2006. Development and validation of a modular, extensible docking program: DOCK 5. Journal of Computer-Aided Molecular Design 20, 10--11, 601--619.Google ScholarGoogle ScholarCross RefCross Ref
  25. Pettersen, E., Goddard, T., Huang, C., Couch, G., Greenblatt, D., Meng, E., and Ferrin, T. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25 (October), 1605--1612.Google ScholarGoogle ScholarCross RefCross Ref
  26. Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. 1996. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology 261, 3, 470--489.Google ScholarGoogle ScholarCross RefCross Ref
  27. Stocks, M. B., Hayward, S., and Laycock, S. D. 2009. Interacting with the biomolecular solvent accessible surface via a haptic feedback device. BMC Structural Biology 9 (October).Google ScholarGoogle Scholar
  28. Vázquez, C., Rosell, J., Chirinos, L., and Domínguez, O. 2010. Haptic primitives guidance based on the Kautham path planner. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, 4686--4691.Google ScholarGoogle Scholar
  29. Xie, D., Morales, M., Pearce, R., Thomas, S., Lien, J.-M., and Amato, N. M. 2008. Incremental map generation (IMG). In Algorithmic Foundation of Robotics VII. Springer, Berlin/Heidelberg, 53--68.Google ScholarGoogle Scholar

Index Terms

  1. Molecular tetris: crowdsourcing molecular docking using path-planning and haptic devices

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          MIG '14: Proceedings of the 7th International Conference on Motion in Games
          November 2014
          184 pages
          ISBN:9781450326230
          DOI:10.1145/2668064

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 November 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate-9of-9submissions,100%

          Upcoming Conference

          MIG '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader