skip to main content
10.1145/2671015.2671026acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

Threefolded motion perception during immersive walkthroughs

Published:11 November 2014Publication History

ABSTRACT

Locomotion is one of the most fundamental processes in the real world, and its consideration in immersive virtual environments (IVEs) is of major importance for many application domains requiring immersive walkthroughs. From a simple physics perspective, such self-motion can be defined by the three components speed, distance, and time. Determining motions in the frame of reference of a human observer imposes a significant challenge to the perceptual processes in the human brain, and the resulting speed, distance, and time percepts are not always veridical. In previous work in the area of IVEs, these components were evaluated in separate experiments, i. e., using largely different hardware, software and protocols.

In this paper we analyze the perception of the three components of locomotion during immersive walkthroughs using the same setup and similar protocols. We conducted experiments in an Oculus Rift head-mounted display (HMD) environment which showed that subjects largely underestimated virtual distances, slightly underestimated virtual speed, and we observed that subjects slightly overestimated elapsed time.

References

  1. Allison, R. S., Harris, L. R., Jenkin, M., Jasiobedzka, U., and Zacher, J. E. 2001. Tolerance of temporal delay in virtual environments. In Proceedings of Virtual Reality (VR), IEEE, 247--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Banton, T., Stefanucci, J., Durgin, F., Fass, A., and Proffitt, D. 2005. The perception of walking speed in a virtual environment. Presence 14, 4, 394--406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Berthoz, A. 2000. The Brain's Sense of Movement. Harvard University Press, Cambridge, Massachusetts.Google ScholarGoogle Scholar
  4. Bottema, O., and Roth, B. 2012. Theoretical Kinematics. Dover.Google ScholarGoogle Scholar
  5. Bremmer, F., and Lappe, M. 1999. The use of optical velocities for distance discrimination and reproduction during visually simulated self-motion. Experimental Brain Research 127, 1, 33--42.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bruder, G., Steinicke, F., Wieland, P., and Lappe, M. 2012. Tuning self-motion perception in virtual reality with visual illusions. IEEE Transactions on Visualization and Computer Graphics (TVCG) 18, 7, 1068--1078. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bruder, G., Wieland, P., Bolte, B., Lappe, M., and Steinicke, F. 2013. Going with the flow: Modifying self-motion perception with computer-mediated optic flow. In Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 67--74.Google ScholarGoogle Scholar
  8. Choi, J. T., and Bastian, A. J. 2007. Adaptation reveals independent control networks for human walking. Nature Neuroscience 10, 1055--1062.Google ScholarGoogle ScholarCross RefCross Ref
  9. Cohen, J., Hansel, C. E. M., and Sylvester, J. D. 1953. A new phenomenon in time judgment. Nature 172, 901.Google ScholarGoogle ScholarCross RefCross Ref
  10. Cornsweet, T. N. 1962. The staircase-method in psychophysics. The American Journal of Psychology 75, 3, 485--491.Google ScholarGoogle ScholarCross RefCross Ref
  11. Durgin, F. H., Gigone, K., and Scott, R. 2005. Perception of visual speed while moving. Journal of Experimental Psychology: Human Perception and Performance 31, 2, 339--353.Google ScholarGoogle ScholarCross RefCross Ref
  12. Efron, R. 1970. Effect of stimulus duration on perceptual onset and offset latencies. Perception & Psychophysics 8, 231--234.Google ScholarGoogle ScholarCross RefCross Ref
  13. Ferwerda, J. 2008. SIGGRAPH core: Psychophysics 101: How to run perception experiments in computer graphics. In International Conference on Computer Graphics and Interactive Techniques, ACM, SIGGRAPH Classes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Fukusima, S. S., Loomis, J. M., and Da Silva, J. A. 1997. Visual perception of egocentric distance as assessed by triangulation. Journal of Experimental Psychology: Human Perception and Performance 23, 1, 86--100.Google ScholarGoogle ScholarCross RefCross Ref
  15. Gibb, R., Gray, R., and Scharff, L. 2010. Aviation Visual Perception: Research, Misperception and Mishaps. Ashgate.Google ScholarGoogle Scholar
  16. Grondin, S. 2008. Psychology of Time. Emerald Group Publishing.Google ScholarGoogle Scholar
  17. Helson, H., and King, S. M. 1931. The tau effect: An example of psychological relativity. Journal of Experimental Psychology 14, 202--217.Google ScholarGoogle ScholarCross RefCross Ref
  18. Interrante, V., Anderson, L., and Ries, B. 2006. Distance perception in immersive virtual environments, revisited. In Proceedings of Virtual Reality (VR), IEEE, 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Interrante, V., Riesand, B., and Anderson, L. 2007. Seven league boots: A new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In Proceedings of Symposium on 3D User Interfaces (3DUI), IEEE, 167--170.Google ScholarGoogle Scholar
  20. Jones, B., and Huang, Y. L. 1982. Spacetime dependencies in psychophysical judgment of extent and duration: Algebraic models of the tau and kappa effects. Psychological Bulletin 91, 128--142.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jones, J. A., Swan II, J. E., Singh, G., and Ellis, S. R. 2011. Peripheral visual information and its effect on distance judgments in virtual and augmented environments. In Proceedings of Symposium on Applied Perception in Graphics and Visualization (APGV), ACM, 29--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jones, J. A., Suma, E. A., Krum, D. M., and Bolas, M. 2012. Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments. In Proceedings of Symposium on Applied Perception (SAP), ACM, 119--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kellner, F., Bolte, B., Bruder, G., Rautenberg, U., Steinicke, F., Lappe, M., and Koch, R. 2012. Geometric calibration of head-mounted displays and its effects on distance estimation. IEEE Transactions on Visualization and Computer Graphics (TVCG) 18, 4, 589--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Klein, E., Swan, J. E., Schmidt, G. S., Livingston, M. A., and Staadt, O. G. 2009. Measurement protocols for medium-field distance perception in large-screen immersive displays. In Proceedings of Virtual Reality (VR), IEEE, 107--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kramer, A., and Merrow, M. 2013. Handbook of Experimental Pharmacology 217: Circadian Clocks. Springer.Google ScholarGoogle Scholar
  26. Kuhl, S. A., Thompson, W. B., and Creem-Regehr, S. H. 2009. HMD calibration and its effects on distance judgments. ACM Transactions on Applied Perception (TAP), in press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lappe, M., Jenkin, M., and Harris, L. R. 2007. Travel distance estimation from visual motion by leaky path integration. Experimental Brain Research 180, 35--48.Google ScholarGoogle ScholarCross RefCross Ref
  28. Leek, M. R. 2001. Adaptive procedures in psychophysical research. Perception & Psychophysics 63, 8, 1279--1292.Google ScholarGoogle ScholarCross RefCross Ref
  29. Loomis, J. M., and Knapp, J. M. 2003. Visual perception of egocentric distance in real and virtual environments. In Virtual and Adaptive Environments, L. Hettinger and M. Haas, Eds. Erlbaum, 21--46.Google ScholarGoogle Scholar
  30. Loomis, J. M., and Philbeck, J. W. 2008. Embodiment, ego-space, and action. Psychology Press, ch. Measuring perception with spatial updating and action, 1--43.Google ScholarGoogle Scholar
  31. Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., and Fry, P. A. 1993. Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General 122, 1, 73--91.Google ScholarGoogle ScholarCross RefCross Ref
  32. Macmillan, N. A., and Creelman, C. D. 2004. Detection Theory: A User's Guide. Psychology Press.Google ScholarGoogle ScholarCross RefCross Ref
  33. Mao, B., Tian, Z., Huang, H., and Gao, Z. 2010. Traffic and Transportation Studies 2010. ASCE.Google ScholarGoogle Scholar
  34. Messing, R., and Durgin, F. H. 2005. Distance perception and the visual horizon in head-mounted displays. ACM Transactions on Applied Perception (TAP) 3, 2, 234--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mohler, B. J., Campos, J. L., Weyel, M. B., and Bülthoff, H. H. 2007. Gait parameters while walking in a head-mounted display virtual environment and the real world. In Proceedings of Eurographics Symposium on Virtual Environments, 85--88.Google ScholarGoogle Scholar
  36. Mohler, B. J. 2007. The Effect of Feedback Within a Virtual Environment on Human Distance Perception and Adaptation. Pro-Quest. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Phillips, L., Ries, B., Interrante, V., Kaeding, M., and Anderson, L. 2009. Distance perception in NPR immersive virtual environments, revisited. In Proceedings of Symposium on Applied Perception in Graphics and Visualization (APGV), ACM, 11--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Plumert, J. M., Kearney, J. K., and Cremer, J. F. 2004. Distance perception in real and virtual environments. In Proceedings of Symposium on Applied Perception in Graphics and Visualization (APGV), 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Renner, R. S., Velichkovsky, B. B., and Helmert, J. R. 2013. The perception of egocentric distances in virtual environments - a review. ACM Computing Surveys 46, 2, 1--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rieser, J. J., Ashmead, D. H., Taylor, C. R., and Youngquist, G. A. 1990. Visual perception and the guidance of locomotion without vision to previously seen targets. Perception 19, 675--689.Google ScholarGoogle ScholarCross RefCross Ref
  41. Roussel, M.-E., Grondin, S., and Killeen, P. 2009. Spatial effects on temporal categorization. Perception 38, 748--762.Google ScholarGoogle ScholarCross RefCross Ref
  42. Ruddle, R. A., and Lessels, S. 2009. The benefits of using a walking interface to navigate virtual environments. ACM Transactions on Computer-Human Interaction (TOCHI) 16, 1, 5:1--5:18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sarrazin, J.-C., Giraudo, M.-D., Pailhous, J., and Bootsma, R. J. 2004. Dynamics of balancing space and time in memory: Tau and kappa effects revisited. Journal of Experimental Psychology: Human Perception & Performance 30, 411--430.Google ScholarGoogle ScholarCross RefCross Ref
  44. Shi, Z., Zou, H., and Müller, H. J. 2010. Advances in Haptics. InTech, ch. Temporal Perception of Visual-Haptic Events in Multimodal Telepresence System, 437--449.Google ScholarGoogle Scholar
  45. Steinicke, F., Bruder, G., Jerald, J., Fenz, H., and Lappe, M. 2010. Estimation of detection thresholds for redirected walking techniques. IEEE Transactions on Visualization and Computer Graphics (TVCG) 16, 1, 17--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Thompson, W. B., Fleming, R. W., Creem-Regehr, S. H., and Stefanucci, J. K. 2011. Visual perception from a computer graphics perspective. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Warren, Jr., W. H. 1998. Visually controlled locomotion: 40 years later. Ecolog. Psychol. 10, 177--219.Google ScholarGoogle ScholarCross RefCross Ref
  48. Wertheim, A. H. 1994. Motion perception during self-motion, the direct versus inferential controversy revisited. Behavioral and Brain Science 17, 2, 293--355.Google ScholarGoogle ScholarCross RefCross Ref
  49. Willemsen, P., Gooch, A. A., Thompson, W. B., and Creem-Regehr, S. H. 2008. Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoperators and Virtual Environments 17, 1, 91--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Willemsen, P., Colton, M. B., Creem-Regehr, S. H., and Thompson, W. B. 2009. The effects of head-mounted display mechanical properties and field-of-view on distance judgments in virtual environments. Transactions on Applied Perception (TAP) 2, 6, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Threefolded motion perception during immersive walkthroughs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          VRST '14: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology
          November 2014
          238 pages
          ISBN:9781450332538
          DOI:10.1145/2671015

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 11 November 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate66of254submissions,26%

          Upcoming Conference

          VRST '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader