skip to main content
10.1145/2671490.2674564acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
tutorial

A New Approach for Time Reversal Communication over Doubly Spread Channels

Authors Info & Claims
Published:12 November 2014Publication History

ABSTRACT

Underwater acoustic channels, which exhibit dispersion both in time and frequency, are referred to as doubly spread channels. The newest time reversal (TR) receivers applied on those channels are based on the sparse spreading function estimation to compensate both delays and Doppler shifts for individual paths. In this paper, a new cross-ambiguity function (CAF) based approach is developed to handle the doubly spread channels. The proposed method identifies the spreading function by computing the CAF, and selects the delay and Doppler factors for each individual path sequentially. Unlike existing approaches of sparse channel estimation, the approach here determines the number of paths simply by thresholding CAF based on the noise power, thus no need to estimate the channel sparsity level; moreover, it has lower computational complexity and less memory requirement to support frequent channel update. Simulation results validate the effectiveness of the proposed approach. Using experimental data collected in shallow water with a mobile transmitter, processing results show a robust performance of the proposed TR receiver combined with block processing against rapid channel fluctuations.

References

  1. A. B. Baggeroer. Acoustic telemetry -- An overview. IEEE J. Ocean. Eng., 9(4): 229--235, 1984. DOI= http://dx.doi.org/10.1109/JOE.1984.1145629Google ScholarGoogle ScholarCross RefCross Ref
  2. D. B. Kilfoyle and A. B. Baggeroer. The state of the art in underwater acoustic telemetry. IEEE J. Ocean. Eng., 25(1): 4--27, 2000. DOI= http://dx.doi.org/10.1109/48.820733Google ScholarGoogle ScholarCross RefCross Ref
  3. M. Stojanovic and J. Preisig. Underwater acoustic communication channels: Propagation models and statistical characterization. Communications Magazine, IEEE, 47(1): 84--89, 2009. DOI= http://dx.doi.org/10.1109/MCOM.2009.4752682 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. H. Eggen, A. B. Baggeroer and J. C. Preisig. Communication over Doppler spread channels. Part I: Channel and receiver presentation. IEEE J. Ocean. Eng., 25: 62--71, 2000. DOI= http://dx.doi.org/10.1109/48.820737Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Fink. Time-reversed acoustics. Phys today, 50: 34--40, 1997.Google ScholarGoogle Scholar
  6. G. F. Edelmann, H. C. Song, S. Kim, W. S. Hodgkiss, W. A. Kuperman and T. Akal. Underwater acoustic communications using time reversal. IEEE J. Ocean. Eng., 30: 852--864, 2005. DOI= http://dx.doi.org/10.1109/JOE.2005.862137Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Gomes, A. Silva, and S. Jesus. Adaptive spatial combining for passive time-reversed communications. J. Acoust. Soc. Am., 124: 1038--1053, 2008. DOI= http://dx.doi.org/10.1121/1.2946711Google ScholarGoogle ScholarCross RefCross Ref
  8. H. C. Song. Time reversal communication in a time-varying sparse channel. J. Acoust. Soc. Am., 130: 161--166, 2011. DOI= http://dx.doi.org/10.1121/1.3654393Google ScholarGoogle ScholarCross RefCross Ref
  9. T. H. Eggen. Underwater acoustic communication over Doppler spread channels. DTIC Document 1997.Google ScholarGoogle ScholarCross RefCross Ref
  10. W. Zeng, and X. Jiang. Time reversal communication over doubly spread channels. J. Acoust. Soc. Am., 132: 3200--3212, 2012. DOI= http://dx.doi.org/10.1121/1.4830726Google ScholarGoogle ScholarCross RefCross Ref
  11. W. Zeng, Z. Yu and W. Xu. Experimental Demonstration of time reversal communication in doubly dispersive underwater channels. Proceedings of the Eighth ACM International Conference on Underwater Networks and Systems. ACM, 2013. DOI= http://doi.acm.org/10.1145/2532378.2532409 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. P. Bello. Characterization of randomly time-variant linear channels. Communications Systems, IEEE transactions on, 11: 360--393, 1963. DOI= http://dx.doi.org/10.1109/TCOM.1963.1088793Google ScholarGoogle Scholar
  13. S. M. Kay and S. B. Doyle. Rapid estimation of the range-Doppler scattering function. Signal Processing, IEEE transactions on, 51(1): 255--268, 2003. DOI= http://dx.doi.org/10.1109/TSP.2002.806579 Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. B. L. Johnson, D. W. Ricker and J. R. Sacha. The use of iterative deconvolution for scattering function identification. J. Acoust. Soc. Am., 91: 2790--2798, 1992. DOI= http://dx.doi.org/10.1121/1.402959Google ScholarGoogle ScholarCross RefCross Ref
  15. R. W. Schafer, R. M. Mersereau and M. A. Richards. Constrained iterative restoration algorithms. Proceedings of the IEEE, 69: 432--450, 1981. DOI= http://dx.doi.org/10.1109/PROC.1981.11987Google ScholarGoogle ScholarCross RefCross Ref
  16. S. Cotter and B. Rao. Sparse channel estimation via matching pursuit with application to equalization. Communications Systems, IEEE transactions on, 50: 374--377, 2002. DOI= http://dx.doi.org/10.1109/26.990897Google ScholarGoogle Scholar
  17. W. Li and J. C. Preisig. Estimation of rapidly time-varying sparse channels. IEEE J. Ocean. Eng., 32: 927--939, 2007. DOI= http://dx.doi.org/10.1109/JOE.2007.906409Google ScholarGoogle ScholarCross RefCross Ref
  18. C. R. Berger, S. Zhou and J. Preisig. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. Signal Processing, IEEE transactions on, 58: 1708--1721, 2010. DOI= http://dx.doi.org/10.1109/TSP.2009.2038424 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. S. Sharif, J.Neasham, O.R. Hinton, and A. E. Adams. A computationally efficient Doppler compensation system for underwater acoustic communication. IEEE J. Ocean. Eng., 25: 52--60, 2000. DOI= http://dx.doi.org/10.1109/48.820736Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Allen and D. Berkeley. Image method for efficiently simulating small room acoustics. J. Acoust. Soc. Am., 65: 943--950, 1979. DOI= http://dx.doi.org/10.1121/1.382599Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A New Approach for Time Reversal Communication over Doubly Spread Channels

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      WUWNet '14: Proceedings of the 9th International Conference on Underwater Networks & Systems
      November 2014
      230 pages
      ISBN:9781450332774
      DOI:10.1145/2671490

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 November 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • tutorial
      • Research
      • Refereed limited

      Acceptance Rates

      WUWNet '14 Paper Acceptance Rate9of27submissions,33%Overall Acceptance Rate84of180submissions,47%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader