skip to main content
research-article

Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows

Published: 29 December 2014 Publication History

Abstract

Smoothed particle hydrodynamics (SPH) is efficient, mass preserving, and flexible in handling topological changes. However, sparsely sampled thin features are difficult to simulate in SPH-based free surface flows, due to a number of robustness and stability issues. In this article, we address this problem from two perspectives: the robustness of surface forces and the numerical instability of thin features. We present a new surface tension force scheme based on a free surface energy functional, under the diffuse interface model. We develop an efficient way to calculate the air pressure force for free surface flows, without using air particles. Compared with previous surface force formulae, our formulae are more robust against particle sparsity in thin feature cases. To avoid numerical instability on thin features, we propose to adjust the internal pressure force by estimating the internal pressure at two scales and filtering the force using a geometry-aware anisotropic kernel. Our result demonstrates the effectiveness of our algorithms in handling a variety of sparsely sampled thin liquid features, including thin sheets, thin jets, and water splashes.

Supplementary Material

he (he.zip)
Supplemental movie and image files for, Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows
MP4 File (a7.mp4)

References

[1]
B. Adams, M. Pauly, R. Keiser, and L. J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3.
[2]
G. Akinci, N. Akinci, M. Ihmsen, and M. Teschner. 2012a. An efficient surface reconstruction pipeline for particle-based fluids. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS'12). 61--68.
[3]
N. Akinci, G. Akinci, and M. Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6, 182:1--182:8.
[4]
N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner. 2012b. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31, 4, 62:1--62:8.
[5]
B. Andersson, S. Jakobsson, A. Mark, F. Edelvik, and L. Davidson. 2010. Modeling surface tension in SPH by interface reconstruction using radial basis functions. In Proceedings of the 5th International SPHERIC Workshop. Vol. 3.
[6]
R. Ando, N. Thurey, and R. Tsuruno. 2012. Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comp. Graph. 18, 8, 1202--1214.
[7]
R. Ando, N. Thurey, and C. Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4.
[8]
M. Becker and M. Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'07). 209--217.
[9]
H. Bhatacharya, Y. Gao, and A. Bargteil. 2011. A level-set method for skinning animated particle data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'11). 17--24.
[10]
J. Blinn. 1982. A generalization of algebraic surface drawing. ACM Trans. Graph. 1, 3, 235--256.
[11]
T. Brochu, C. Batty, and R. Bridson. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4, 47.
[12]
J. Cahn and J. Hilliard. 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258.
[13]
J. K. Chen, J. E. Beraun, and C. J. Jih. 1999. An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech. 23, 4, 279--287.
[14]
P. Clausen, M. Wicke, J. R. Shewchuk, and J. F. O'Brien. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Trans. Graph. 32, 2, 17:1--17:15.
[15]
J. Gray, J. Monaghan, and R. Swift. 2001. SPH elastic dynamics. Comput. Methods Appl. Mech. Engin. 190, 49, 6641--6662.
[16]
X. He, N. Liu, S. Li, H. Wang, and G. Wang. 2012a. Local poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31, 6, 1948--1958.
[17]
X. He, N. Liu, G. Wang, F. Zhang, S. Li, S. Shao, and H. Wang. 2012b. Staggered meshless solid-fluid coupling. ACM Trans. Graph. 31, 6, 149.
[18]
X. Hu and N. Adams. 2006. A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 2, 844--861.
[19]
M. Ihmsen, N. Akinci, M. Becker, and M. Teschner. 2011. A parallel SPH implementation on multi-core cpus. Comput. Graph. Forum 30, 1, 99--112.
[20]
M. Ihmsen, N. Akinci, M. Gissler, and M. Teschner. 2010. Boundary handling and adaptive time-stepping for PCISPH. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS'10). 79--88.
[21]
M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner. 2014. SPH fluids in computer graphics. In Proceedings of the Eurographics 2014-State of the Art Reports. The Eurographics Association, 21--42.
[22]
G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25, 3, 805--811.
[23]
B. Kim, Y. Liu, I. Llamas, X. Jiao, and J. Rossignac. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3.
[24]
F. Losasso, F. Gibou, and R. Fedkiw. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. 23, 3, 457--462.
[25]
J. J. Monaghan. 1989. On the problem of penetration in particle methods. J. Comput. Phys. 82, 1, 1--15.
[26]
J. J. Monaghan. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 2, 399--406.
[27]
J. Morris. 2000. Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33, 3, 333--353.
[28]
M. Muller, D. Charypar, and M. Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'03). 154--159.
[29]
M. Muller, B. Solenthaler, R. Keiser, and M. Gross. 2005. Particle-based fluid-fluid interaction. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'05). 237--244.
[30]
S. Nugent and H. Posch. 2000. Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E62, 4, 4968.
[31]
H. Schechter and R. Bridson. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4, 61:1--61:8.
[32]
F. Sirotkin and J. Yoh. 2011. A new particle method for simulating breakup of liquid jets. J. Comput. Phys. 231, 4, 1650--1674.
[33]
B. Solenthaler and M. Gross. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4, 81:1--81:8.
[34]
B. Solenthaler and R. Pajarola. 2008. Density contrast SPH interfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'08). 211--218.
[35]
B. Solenthaler and R. Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3, 40:1--40:6.
[36]
M. Sussman and M. Ohta. 2009. A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31, 4, 2447--2471.
[37]
J. Swegle, D. Hicks, and S. Attaway. 1995. Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 1, 123--134.
[38]
A. Tartakovsky and P. Meakin, 2005. Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E72, 2, 026301.
[39]
N. Thurey, C. Wojtan, M. Gross, and G. Turk. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29, 4, 48:1--48:10.
[40]
J. Van Der Waals. 1893. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. Z. Phys. Chem. 13, 657.
[41]
C. Wojtan, N. Thurey, M. Gross, and G. Turk. 2010. Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29, 50:1--50:8.
[42]
J. Yu and G. Turk. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA'10). 217--225.
[43]
J. Yu, C. Wojtan, G. Turk, and C. Yap. 2012. Explicit mesh surfaces for particle based fluids. Comput. Graph. Forum 31, 4, 815--824.
[44]
M. Zhang. 2010. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method. J. Comput. Phys. 229, 19, 7238--7259.
[45]
Y. Zhang, H. Wang, S. Wang, Y. Tong, and K. Zhou. 2011. A deformable surface model for real-time water drop animation. IEEE Trans. Vis. Comput. Graph. 18, 8, 1281--1289.
[46]
Y. Zhu and R. Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965--972.

Cited By

View all
  • (2025)Smoothed particle hydrodynamics for free-surface and multiphase flows: a reviewReports on Progress in Physics10.1088/1361-6633/ada80f88:3(037001)Online publication date: 11-Feb-2025
  • (2024)Study on fluid-structure coupling of SPH methodProceedings of the 2024 International Conference on Artificial Intelligence of Things and Computing10.1145/3708282.3708287(21-24)Online publication date: 30-Aug-2024
  • (2024)Unified Pressure, Surface Tension and Friction for SPH FluidsACM Transactions on Graphics10.1145/370803444:1(1-28)Online publication date: 10-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 1
November 2014
153 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2702692
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 December 2014
Accepted: 01 May 2014
Revised: 01 April 2014
Received: 01 June 2013
Published in TOG Volume 34, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Fluid dynamics
  2. diffuse interface model
  3. liquid animation
  4. smoothed particle hydrodynamics (SPH)
  5. surface tension
  6. thin feature

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)48
  • Downloads (Last 6 weeks)8
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Smoothed particle hydrodynamics for free-surface and multiphase flows: a reviewReports on Progress in Physics10.1088/1361-6633/ada80f88:3(037001)Online publication date: 11-Feb-2025
  • (2024)Study on fluid-structure coupling of SPH methodProceedings of the 2024 International Conference on Artificial Intelligence of Things and Computing10.1145/3708282.3708287(21-24)Online publication date: 30-Aug-2024
  • (2024)Unified Pressure, Surface Tension and Friction for SPH FluidsACM Transactions on Graphics10.1145/370803444:1(1-28)Online publication date: 10-Dec-2024
  • (2024)A Dual-Particle Approach for Incompressible SPH FluidsACM Transactions on Graphics10.1145/364988843:3(1-18)Online publication date: 9-Apr-2024
  • (2024)Numerical simulations of thermal capillary migration of a droplet on a temperature gradient wall with smoothed particle hydrodynamics methodPhysics of Fluids10.1063/5.020404036:4Online publication date: 29-Apr-2024
  • (2024)An improved CSF model and an improved KGC technique incorporated in SPH for modeling selective laser melting processEngineering Analysis with Boundary Elements10.1016/j.enganabound.2024.105876167(105876)Online publication date: Oct-2024
  • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-y10:5(803-858)Online publication date: 27-Apr-2024
  • (2024)Dual-mechanism surface tension model for SPH-based simulationThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03474-440:7(4765-4776)Online publication date: 1-Jul-2024
  • (2024)A two‐way coupling approach for simulating bouncing dropletsInternational Journal for Numerical Methods in Engineering10.1002/nme.7592Online publication date: 13-Oct-2024
  • (2023)Implicit Surface Tension for SPH Fluid SimulationACM Transactions on Graphics10.1145/363193643:1(1-14)Online publication date: 30-Nov-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media