skip to main content
10.1145/2688073.2688105acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article

On the Communication Complexity of Secure Function Evaluation with Long Output

Published: 11 January 2015 Publication History

Abstract

We study the communication complexity of secure function evaluation (SFE). Consider a setting where Alice has a short input χA, Bob has an input χB and we want Bob to learn some function y = fA, χB) with large output size. For example, Alice has a small secret decryption key, Bob has a large encrypted database and we want Bob to learn the decrypted data without learning anything else about Alice's key. In a trivial insecure protocol, Alice can just send her short input χA to Bob. However, all known SFE protocols have communication complexity that scales with size of the output y, which can potentially be much larger. Is such 'output-size dependence' inherent in SFE'
Surprisingly, we show that output-size dependence can be avoided in the honest-but-curious setting. In particular, using indistinguishability obfuscation (iO) and fully homomorphic encryption (FHE), we construct the first honest-but-curious SFE protocol whose communication complexity only scales with that of the best insecure protocol for evaluating the desired function, independent of the output size. Our construction relies on a novel way of using iO via a new tool that we call a 'somewhere statistically binding (SSB) hash', and which may be of independent interest.
On the negative side, we show that output-size dependence is inherent in the fully malicious setting, or even already in an honest-but-deterministic setting, where the corrupted party follows the protocol as specified but fixes its random tape to some deterministic value. Moreover, we show that even in an offline/online protocol, the communication of the online phase must have output-size dependence. This negative result uses an incompressibility argument and it generalizes several recent lower bounds for functional encryption and (reusable) garbled circuits, which follow as simple corollaries of our general theorem.

References

[1]
S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption: New perspectives and lower bounds. In R. Canetti and J. A. Garay, editors, CRYPTO (2), volume 8043 of LNCS, pages 500--518. Springer, 2013.
[2]
P. Ananth, D. Boneh, S. Garg, A. Sahai, and M. Zhandry. Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive, 2013:689, 2013.
[3]
B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with constant online rate or how to compress garbled circuits keys. In R. Canetti and J. A. Garay, editors, CRYPTO (2), volume 8043 of LNCS, pages 166--184. Springer, 2013.
[4]
G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation with low communication, computation and interaction via threshold FHE. In D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume 7237 of LNCS, pages 483--501. Springer, 2012.
[5]
B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the (im)possibility of obfuscating programs. In J. Kilian, editor, CRYPTO, volume 2139 of LNCS, pages 1--18. Springer, 2001.
[6]
E. Boyle, K.-M. Chung, and R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC, volume 8349 of LNCS, pages 52--73. Springer, 2014.
[7]
Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping. In S. Goldwasser, editor, ITCS, pages 309--325. ACM, 2012.
[8]
Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In R. Ostrovsky, editor, FOCS, pages 97--106. IEEE, 2011.
[9]
A. De Caro and V. Iovino. On the power of rewinding simulators in functional encryption. IACR Cryptology ePrint Archive, 2013:752, 2013.
[10]
A. De Caro, V. Iovino, A. Jain, A. O'Neill, O. Paneth, and G. Persiano. On the achievability of simulation-based security for functional encryption. In R. Canetti and J. A. Garay, editors, CRYPTO (2), volume 8043 of LNCS, pages 519--535. Springer, 2013.
[11]
S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS, pages 40--49. IEEE Computer Society, 2013.
[12]
S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In J. A. Garay and R. Gennaro, editors, CRYPTO (1), volume 8616 of LNCS, pages 518--535. Springer, 2014.
[13]
C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, STOC, pages 169--178. ACM, 2009.
[14]
C. Gentry, S. Halevi, M. Raykova, and D. Wichs. Outsourcing private RAM computation. IACR Cryptology ePrint Archive, 2014:148, 2014.
[15]
C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In R. Canetti and J. A. Garay, editors, CRYPTO (1), volume 8042 of LNCS, pages 75--92. Springer, 2013.
[16]
S. Goldwasser, V. Goyal, A. Jain, and A. Sahai. Multi-input functional encryption. IACR Cryptology ePrint Archive, 2013:727, 2013.
[17]
S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled circuits and succinct functional encryption. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, STOC, pages 555--564. ACM, 2013.
[18]
J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM J. Comput., 28(4):1364--1396, 1999.
[19]
C.-Y. Hsiao, C.-J. Lu, and L. Reyzin. Conditional computational entropy, or toward separating pseudoentropy from compressibility. In M. Naor, editor, EUROCRYPT, volume 4515 of LNCS, pages 169--186. Springer, 2007.
[20]
P. Hubácek and D. Wichs. On the communication complexity of secure function evaluation with long output. IACR Cryptology ePrint Archive, 2014:669, 2014.
[21]
J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In S. R. Kosaraju, M. Fellows, A. Wigderson, and J. A. Ellis, editors, STOC, pages 723--732. ACM, 1992.
[22]
Y. Lindell, K. Nissim, and C. Orlandi. Hiding the input-size in secure two-party computation. In K. Sako and P. Sarkar, editors, ASIACRYPT, volume 8270 of LNCS, pages 421--440. Springer, 2013.
[23]
M. Naor and K. Nissim. Communication preserving protocols for secure function evaluation. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis, editors, STOC, pages 590--599. ACM, 2001.
[24]
A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS, pages 160--164. IEEE Computer Society, 1982.
[25]
A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS, pages 80--91. IEEE Computer Society, 1982.

Cited By

View all
  • (2024)SNARGs under LWE via Propositional ProofsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649770(1750-1757)Online publication date: 10-Jun-2024
  • (2024)Size-Hiding Computation in the Honest-But-Curious ModelInformation Security and Privacy10.1007/978-981-97-5028-3_16(311-329)Online publication date: 16-Jul-2024
  • (2024)Registered FE Beyond Predicates: (Attribute-Based) Linear Functions and MoreAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0875-1_3(65-104)Online publication date: 10-Dec-2024
  • Show More Cited By

Index Terms

  1. On the Communication Complexity of Secure Function Evaluation with Long Output

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ITCS '15: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
    January 2015
    404 pages
    ISBN:9781450333337
    DOI:10.1145/2688073
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 January 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. communication complexity
    2. fully homomorphic encryption
    3. indistinguishability obfuscation
    4. merkle hash tree
    5. secure function evaluation

    Qualifiers

    • Research-article

    Conference

    ITCS'15
    Sponsor:
    ITCS'15: Innovations in Theoretical Computer Science
    January 11 - 13, 2015
    Rehovot, Israel

    Acceptance Rates

    ITCS '15 Paper Acceptance Rate 45 of 159 submissions, 28%;
    Overall Acceptance Rate 172 of 513 submissions, 34%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)28
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 27 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SNARGs under LWE via Propositional ProofsProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649770(1750-1757)Online publication date: 10-Jun-2024
    • (2024)Size-Hiding Computation in the Honest-But-Curious ModelInformation Security and Privacy10.1007/978-981-97-5028-3_16(311-329)Online publication date: 16-Jul-2024
    • (2024)Registered FE Beyond Predicates: (Attribute-Based) Linear Functions and MoreAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0875-1_3(65-104)Online publication date: 10-Dec-2024
    • (2024)Signature-Based Witness Encryption with Compact CiphertextAdvances in Cryptology – ASIACRYPT 202410.1007/978-981-96-0875-1_1(3-31)Online publication date: 10-Dec-2024
    • (2024)Key-Homomorphic and Aggregate Verifiable Random FunctionsTheory of Cryptography10.1007/978-3-031-78023-3_4(98-129)Online publication date: 3-Dec-2024
    • (2024)Monotone Policy BARGs from BARGs and Additively Homomorphic EncryptionTheory of Cryptography10.1007/978-3-031-78017-2_14(399-430)Online publication date: 28-Nov-2024
    • (2024)Batching Adaptively-Sound SNARGs for NPTheory of Cryptography10.1007/978-3-031-78017-2_12(339-370)Online publication date: 28-Nov-2024
    • (2024)PIR with Client-Side Preprocessing: Information-Theoretic Constructions and Lower BoundsAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68400-5_5(148-182)Online publication date: 18-Aug-2024
    • (2024)Fully-Succinct Multi-key Homomorphic Signatures from Standard AssumptionsAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68382-4_10(317-351)Online publication date: 18-Aug-2024
    • (2023)Efficient Set Membership Encryption and ApplicationsProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623131(1080-1092)Online publication date: 15-Nov-2023
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media