skip to main content
10.1145/2688073.2688114acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article

Arithmetic Cryptography: Extended Abstract

Published: 11 January 2015 Publication History

Abstract

We study the possibility of computing cryptographic primitives in a fully-black-box arithmetic model over a finite field $\F$. In this model, the input to a cryptographic primitive (e.g., encryption scheme) is given as a sequence of field elements, the honest parties are implemented by arithmetic circuits which make only a black-box use of the underlying field, and the adversary has a full (non-black-box) access to the field. This model captures many standard information-theoretic constructions.
We prove several positive and negative results in this model for various cryptographic tasks. On the positive side, we show that, under reasonable assumptions, computational primitives like commitment schemes, public-key encryption, oblivious transfer, and general secure two-party computation can be implemented in this model. On the negative side, we prove that garbled circuits, homomorphic encryption, and secure computation with low online complexity cannot be achieved in this model. Our results reveal a qualitative difference between the standard model and the arithmetic model, and explain, in retrospect, some of the limitations of previous constructions.

References

[1]
S. Aaronson and A. Wigderson. Algebrization: a new barrier in complexity theory. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 731--740. ACM Press, May 2008.
[2]
D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In A. Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36--53. Springer, Apr. 2009.
[3]
M. Alekhnovich. More on average case vs approximation complexity. In 44th FOCS, pages 298--307. IEEE Computer Society Press, Oct. 2003.
[4]
B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography by cellular automata or how fast can complexity emerge in nature? In A. C.-C. Yao, editor, ICS 2010, pages 1--19. Tsinghua University Press, Jan. 2010.
[5]
B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. In R. Ostrovsky, editor, 52nd FOCS, pages 120--129. IEEE Computer Society Press, Oct. 2011.
[6]
B. Applebaum, Y. Ishai, E. Kushilevitz, and B. Waters. Encoding functions with constant online rate or how to compress garbled circuits keys. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 166--184. Springer, Aug. 2013.
[7]
Baker, Gill, and Solovay. Relativizations of the P =? NP question. SICOMP: SIAM Journal on Computing, 4, 1975.
[8]
D. Beaver. Precomputing oblivious transfer. In D. Coppersmith, editor, CRYPTO'95, volume 963 of LNCS, pages 97--109. Springer, Aug. 1995.
[9]
M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 784--796. ACM Press, Oct. 2012.
[10]
M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1--10. ACM Press, May 1988.
[11]
R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 169--188. Springer, May 2011.
[12]
A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton. Cryptographic primitives based on hard learning problems. In D. R. Stinson, editor, CRYPTO'93, volume 773 of LNCS, pages 278--291. Springer, Aug. 1993.
[13]
M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo random bits. In 23rd FOCS, pages 112--117. IEEE Computer Society Press, Nov. 1982.
[14]
Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In R. Ostrovsky, editor, 52nd FOCS, pages 97--106. IEEE Computer Society Press, Oct. 2011.
[15]
D. Chaum, C. Crépeau, and I. Damg\r ard. Multiparty unconditionally secure protocols (extended abstract). In 20th ACM STOC, pages 11--19. ACM Press, May 1988.
[16]
R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryption. In B. Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280--299. Springer, May 2001.
[17]
R. Cramer and S. Fehr. Optimal black-box secret sharing over arbitrary Abelian groups. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 272--287. Springer, Aug. 2002.
[18]
R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over rings. In E. Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 596--613. Springer, May 2003.
[19]
I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643--662. Springer, Aug. 2012.
[20]
A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group model. In Y. Zheng, editor, ASIACRYPT 2002, volume 2501 of LNCS, pages 100--109. Springer, Dec. 2002.
[21]
Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures (extended abstract). In J. Feigenbaum, editor, CRYPTO'91, volume 576 of LNCS, pages 457--469. Springer, Aug. 1991.
[22]
Z. Dvir, A. Gabizon, and A. Wigderson. Extractors and rank extractors for polynomial sources. In 48th FOCS, pages 52--62. IEEE Computer Society Press, Oct. 2007.
[23]
T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms. In G. R. Blakley and D. Chaum, editors, CRYPTO'84, volume 196 of LNCS, pages 10--18. Springer, Aug. 1984.
[24]
U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (extended abstract). In 26th ACM STOC, pages 554--563. ACM Press, May 1994.
[25]
M. K. Franklin and S. Haber. Joint encryption and message-efficient secure computation. In D. R. Stinson, editor, CRYPTO'93, volume 773 of LNCS, pages 266--277. Springer, Aug. 1993.
[26]
S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 1--17. Springer, May 2013.
[27]
C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, 41st ACM STOC, pages 169--178. ACM Press, May / June 2009.
[28]
H. Gilbert, M. J. B. Robshaw, and Y. Seurin. How to encrypt with the LPN problem. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 679--690. Springer, July 2008.
[29]
O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of the ACM, 33:792--807, 1986.
[30]
O. Goldreich, H. Krawczyk, and M. Luby. On the existence of pseudorandom generators. In S. Goldwasser, editor, CRYPTO'88, volume 403 of LNCS, pages 146--162. Springer, Aug. 1988.
[31]
O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In 21st ACM STOC, pages 25--32. ACM Press, May 1989.
[32]
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In A. Aho, editor, 19th ACM STOC, pages 218--229. ACM Press, May 1987.
[33]
S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270--299, 1984.
[34]
J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, 28(4):1364--1396, 1999.
[35]
Y. Ishai. Randomization techniques for secure computation. In M. Prabhakaran and A. Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and Information Security Series, pages 222--248. IOS press, Amsterdam, 2012.
[36]
Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to round-efficient secure computation. In 41st FOCS, pages 294--304. IEEE Computer Society Press, Nov. 2000.
[37]
Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-Cherniavsky. On the power of correlated randomness in secure computation. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 600--620. Springer, Mar. 2013.
[38]
Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572--591. Springer, Aug. 2008.
[39]
Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no honest majority. In O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294--314. Springer, Mar. 2009.
[40]
E. Kiltz, K. Pietrzak, D. Cash, A. Jain, and D. Venturi. Efficient authentication from hard learning problems. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 7--26. Springer, May 2011.
[41]
U. M. Maurer. Abstract models of computation in cryptography (invited paper). In N. P. Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of LNCS, pages 1--12. Springer, Dec. 2005.
[42]
U. M. Maurer and S. Wolf. Lower bounds on generic algorithms in groups. In K. Nyberg, editor, EUROCRYPT'98, volume 1403 of LNCS, pages 72--84. Springer, May / June 1998.
[43]
M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In 31st ACM STOC, pages 245--254. ACM Press, May 1999.
[44]
K. Pietrzak. Cryptography from learning parity with noise. In SOFSEM 2012: Theory and Practice of Computer Science - 38th Conference on Current Trends in Theory and Practice of Computer Science, Spindleruv Mlýn, Czech Republic, January 21--27, 2012. Proceedings, pages 99--114, 2012.
[45]
A. A. Razborov and S. Rudich. Natural proofs. In 26th ACM STOC, pages 204--213. ACM Press, May 1994.
[46]
O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow and R. Fagin, editors, 37th ACM STOC, pages 84--93. ACM Press, May 2005.
[47]
A. Shamir. How to share a secret. Communications of the Association for Computing Machinery, 22(11):612--613, Nov. 1979.
[48]
V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor, EUROCRYPT'97, volume 1233 of LNCS, pages 256--266. Springer, May 1997.
[49]
A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd FOCS, pages 80--91. IEEE Computer Society Press, Nov. 1982.
[50]
A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages 162--167. IEEE Computer Society Press, Oct. 1986.

Cited By

View all
  • (2024)Lower Bounds for Lattice-Based Compact Functional EncryptionAdvances in Cryptology – EUROCRYPT 202410.1007/978-3-031-58723-8_9(249-279)Online publication date: 26-May-2024
  • (2023)Scalable Multiparty GarblingProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623132(2158-2172)Online publication date: 15-Nov-2023
  • (2023)New Ways to Garble Arithmetic CircuitsAdvances in Cryptology – EUROCRYPT 202310.1007/978-3-031-30617-4_1(3-34)Online publication date: 15-Apr-2023
  • Show More Cited By

Index Terms

  1. Arithmetic Cryptography: Extended Abstract

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ITCS '15: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
    January 2015
    404 pages
    ISBN:9781450333337
    DOI:10.1145/2688073
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 January 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. arithmetic circuits
    2. computational complexity
    3. cryptography

    Qualifiers

    • Research-article

    Funding Sources

    • Israel Science Foundation
    • German-Israeli Foundation for Scientific Research and Development
    • Israel Ministry of Science and Technology

    Conference

    ITCS'15
    Sponsor:
    ITCS'15: Innovations in Theoretical Computer Science
    January 11 - 13, 2015
    Rehovot, Israel

    Acceptance Rates

    ITCS '15 Paper Acceptance Rate 45 of 159 submissions, 28%;
    Overall Acceptance Rate 172 of 513 submissions, 34%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)19
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Lower Bounds for Lattice-Based Compact Functional EncryptionAdvances in Cryptology – EUROCRYPT 202410.1007/978-3-031-58723-8_9(249-279)Online publication date: 26-May-2024
    • (2023)Scalable Multiparty GarblingProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3623132(2158-2172)Online publication date: 15-Nov-2023
    • (2023)New Ways to Garble Arithmetic CircuitsAdvances in Cryptology – EUROCRYPT 202310.1007/978-3-031-30617-4_1(3-34)Online publication date: 15-Apr-2023
    • (2022)Indistinguishability Obfuscation from LPN over $$\mathbb {F}_p$$, DLIN, and PRGs in NC$$^0$$Advances in Cryptology – EUROCRYPT 202210.1007/978-3-031-06944-4_23(670-699)Online publication date: 25-May-2022
    • (2021)Indistinguishability obfuscation from well-founded assumptionsProceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3406325.3451093(60-73)Online publication date: 15-Jun-2021
    • (2021)Smoothing Out Binary Linear Codes and Worst-Case Sub-exponential Hardness for LPNAdvances in Cryptology – CRYPTO 202110.1007/978-3-030-84252-9_16(473-501)Online publication date: 16-Aug-2021
    • (2020)Correlated Pseudorandom Functions from Variable-Density LPN2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS46700.2020.00103(1069-1080)Online publication date: Nov-2020
    • (2019)Arithmetic Garbling from Bilinear MapsComputer Security – ESORICS 201910.1007/978-3-030-29962-0_9(172-192)Online publication date: 15-Sep-2019
    • (2019)New Techniques for Obfuscating ConjunctionsAdvances in Cryptology – EUROCRYPT 201910.1007/978-3-030-17659-4_22(636-666)Online publication date: 24-Apr-2019
    • (2017)Secure Arithmetic Computation with Constant Computational OverheadAdvances in Cryptology – CRYPTO 201710.1007/978-3-319-63688-7_8(223-254)Online publication date: 29-Jul-2017
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media