

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00

Helping Children Eat Well Via Mobile Software Technologies

Violetta Vylegzhanina, Douglas C. Schmidt, Pamela Hull, Janice S. Emerson,
Meghan E. Quirk, and Shelagh Mulvaney
Vanderbilt University, Nashville Tennessee, USA

{violetta.vylegzhanina, douglas.c.schmidt, pam.hull, shelagh.mulvaney}@vanderbilt.edu
Tennessee State University, Nashville, Tennessee, USA

{jemerson, mquirk}@tnstate.edu

Abstract
This paper describes an Android mobile app we developed to
simplify the shopping experience of participants in the Special
Supplemental Nutrition Program for Women, Infants, and Chil-
dren (WIC), which provides low-income families vouchers to
purchase life-stage appropriate, nutritious foods. Our app helps
alleviate the tedious and error-prone use of paper WIC vouchers
by allowing participants to scan food items in the store and auto-
matically identify if an item (including its size and quantity) is
authorized for the enrolled WIC participant. In addition to serving
as a shopping tool, the app also provides a platform for nutrition
education through healthy tip push notifications and a gallery of
easy-to-fix snack recipes that are tailored for WIC participant
shopping choices and other racial/ethnic patterns in dietary prefer-
ences. This paper explains the key domain and technical challeng-
es we faced when creating our Android app and describes how we
overcame these challenges by applying data normalization, soft-
ware patterns, and Agile development methods.

Categories and Subject Descriptors D.2.11 [Software Engi-
neering]: Software Architectures; H.2.1 [Database Manage-
ment]: Logical Design; J.3 [Computer Applications]: Life and
Medical Sciences

Keywords Mobile app; Android; software design patterns, Open
mHealth; Agile; data normalization; data analysis.

1. Introduction
The Special Supplemental Nutrition Program for Women, Infants,
and Children (WIC) [1,2] is administered by the Food and Nutri-
tion Service (FNS) of the United States Department of Agriculture
(USDA). The WIC program provides federal grants to states for
supplemental foods, health care referrals, and nutrition education
for low-income pregnant, breastfeeding, and non-breastfeeding
postpartum women, as well as to infants and children up to age
five who are at nutritional risk.

As part of the USDA-funded Nashville CHildren Eating Well
(CHEW) project, the goal of our work presented in this paper was
to develop an Android app to help parents and guardians of WIC-
enrolled children shop more efficiently and effectively, in an

effort to promote healthy snacks and beverages in the home envi-
ronment. This paper explores challenges in both the domain of the
WIC program and the technical approaches we applied to the
CHEW app development. We also present our solutions to these
challenges based on applying database schema design and nor-
malization, software patterns, and Agile development methods.
Finally, we outline our future work on developing data analytics
that analyze WIC participant shopping data to personalize healthy
tips for users and to help evaluate the impact of the app on en-
hancing nutrition education.

The remainder of the paper is organized as follows: Section 2
describes the WIC domain and its key domain challenges; Section
3 summarizes the CHEW app architecture and implementation;
Section 4 explains how we addressed the key WIC domain chal-
lenges; Section 5 explains how we addressed the key technology
challenges; Section 6 compares our work on the CHEW app with
related work; and Section 7 presents concluding remarks.

2. An Overview of the WIC Domain and Key
Domain Challenges

The WIC program focuses on improving the health and nutrition
of low-income pregnant women, breastfeeding mothers, and
infants, and children under the age of five. Currently, WIC serves
over 50 percent of all infants born in the United States. The
USDA sets the overall requirements for the WIC program, but
leaves some areas flexible for the state-level agency to make
select decisions about how to implement the program [1].

WIC participants in the state of Tennessee receive two types of
paper vouchers on a monthly basis: a regular voucher and a cash
value voucher [2]. Regular vouchers list the participant’s food
package based on their eligibility category and age (e.g., pregnant
woman, breastfeeding mother, infant, 3- or 4-year old). Regular
vouchers limit the quantities, sizes, and brands of specific WIC-
approved products for each WIC-enrolee. Participants normally
receive two regular vouchers per month, with roughly half of the
food package on each voucher. Cash value vouchers, in contrast
to the regular voucher, provide a dollar amount limit ($6 or $10)
for the purchase of fresh or frozen fruits and vegetables.

The shopping experience using paper vouchers is complicated
since each WIC-enrolled family member receives regular vouch-
ers for different food packages. Some products (e.g., peanut
butter, baby food, infant formula) are included in certain food
packages but not others, depending on the life stage of the partici-
pant. Moreover, each food package has different limits on quan-
tities and sizes of items in the regular vouchers. Some food items
can be chosen either uniquely or in any given combination of
each. For example, some regular vouchers allow WIC participants
to choose either a maximum of three non-fat dry milks or any

combination of three buttermilks, evaporated milks, and tofu. For
other items, like cereal, multiple items can be selected based on
the total number of ounces in all of the packages.

Cash value vouchers are provided in different dollar amounts
depending on the eligibility category of the family members. For
the cash value voucher, rather than quantity, size, or items, users
have a maximum dollar amount to use, so the selection of items
depends on the price. Using cash value vouchers requires math
proficiency to calculate and keep track of the prices of various
possible combinations of loose produce priced by weight, priced
by the piece, or priced by the package. This process can be cum-
bersome, especially for participants with low numeracy skills.

WIC participants often face delays when checking out at the
store since each voucher must be its own transaction. Families
with multiple WIC-enrollees must separate items for each partici-
pant before checking out. Once at the register, cashiers must
determine if an item is authorized for the particular voucher(s)
used. Moreover, each paper voucher can only be used during one
shopping trip. These factors contribute to suboptimal benefit
utilization where WIC participants often do not purchase all the
nutritious foods that they are allowed to get on each voucher.

The mobile software technologies presented in this paper were
designed to simplify the shopping experience of WIC participants.
Addressing these challenges motivated the following requirements
and constraints on our software solution for the CHEW app:
• Minimize user involvement − WIC participants are often frus-

trated while shopping because they must manually keep track
of everything they buy, which is tedious and error-prone.
Likewise, participants with low numeracy skills struggle to
calculate prices of fruit and vegetable produce items. One goal
of our Android app was therefore to automate and simplify us-
ers’ shopping experience as much as possible.

• Automate the tailoring and delivery of nutrition education via
the app – WIC participants currently receive nutrition educa-
tion during their quarterly appointments at the WIC clinic
when receive their paper vouchers. It is also beneficial, how-
ever, to provide supplemental nutrition education content to
participant in between appointments via the smartphone app.
Our Android app thus automatically encourages guardians of
WIC-enrollees to serve healthy snacks and beverages to their
young children (and possibly the whole family) by providing
informative tips and easy-to-prepare snack recipes.

3. Overview of the CHEW App Architecture and
Implementation

Before describing our solutions to the domain challenges summa-
rized in Section 2, this section presents an overview of the CHEW
app architecture, which is shown in Figure 1. A cloud-based
server runs Open mHealth data storage services [5] (discussed
further in Section 5.3), which provides an open architecture that
improves integration among mobile health solutions, storing the
list of WIC-approved items in a MongoDB database [6] (Step 1).

When the CHEW app is run for the first time, it retrieves the
data containing WIC-approved items from the Open mHealth
cloud server (Step 2) and caches a copy of this data on the
smartphone in an Android Content Provider [3,4] (Step 3). This
Content Provider stores the data locally in an SQLite database [7]
(Step 4), which encapsulates the data and manages its access by
the user-facing portion of the CHEW app.

When the app is used during a shopping trip, it stores the us-
ers’ shopping choices in the Content Provider. These data are
periodically synchronized with the cloud-based server (Step 5),

which stores it in a MongoDB database for subsequent analysis of
participant shopping choices (Step 6).

The CHEW app is written largely in Java, with some use of
embedded SQL statements in the Content Provider to access the
WIC and user data stored in the SQLite database. The number of
source lines of code in the CHEW app is ~8k and the number of
classes is ~70, excluding 3rd party libraries.

4. Resolving WIC Domain Challenges
As outlined in Section 2, the primary domain challenges faced by
WIC benefit users were the difficulty in selecting and tracking
selected WIC-approved items and the difficulty of calculating
prices of fruit and vegetable produce due to the low numeracy
skills of most participants. Another challenge was to provide the
supplemental nutrition education via the CHEW app. This section
describes how we applied principles of Agile software develop-
ment to help us solve these challenges efficiently and effectively.

4.1 Applying Agile Development Methods

We applied Agile software development principles while working
on the CHEW app to achieve an iterative and incremental devel-
opment, which enabled a high degree collaboration with stake-
holders, flexible responses to change, and (ultimately) higher
quality and efficacy of the resulting software. We employed
weekly sprints that consisted of design, development, and testing.
At the end of each sprint we met with key project stakeholders to
demonstrate our progress in the CHEW app development and
receive/triage their feedback.

We also met often with WIC participants to demonstrate and
test our prototype, e.g., we conducted several shopping trips with
users to test the app in an actual deployment environment at local
grocery stores. These short sprints and periodic meetings with

Figure 1: Architecture of the CHEW App.

stakeholders increased the flexibility and quality of the CHEW
app prototype, e.g., we detected and corrected bugs and enhanced
the code more easily as development proceeded incrementally.

Figure 2 depicts the structure and example milestones in the
CHEW app development process. We applied a spiral model to
incrementally introduce ourselves to the WIC program and gain a
deeper understanding of the domain problem we needed to solve.
We simultaneously planned app features that helped simplify the
shopping experience for WIC families and automate and custom-
ized key portions of their nutrition education. We also had to learn
and master Android software features needed to create the app and
resolve the challenges in the WIC domain.

Figure 2 also shows several examples of the spiral process as
we applied Agile principles of software development. In particu-
lar, as we gained a deeper understanding of Android and Open
mHealth features, we were better equipped to design appropriate
software implementations, which in turn helped us provide more
effective solutions for WIC participants.

4.2 Minimizing User Involvement

As discussed in Section 2, WIC benefit users currently have a
complicated experience since they must manually check to ensure
they select approved WIC items during their shopping trips, as
well as manually keep track of the items’ prices and quantities.
Below we describe how we designed the CHEW app to automate
and simplify users’ shopping experience as much as possible.

4.2.1 Automating the WIC Shopping Experience

The CHEW app needed a means to enable participants to transfer
all the information about a particular food item to the device,
notify the user that the item is approved to buy, and then keep
track of its quantity. We concluded that scanning a product’s
barcode would be the most effective way to automate these tasks.
We therefore programmed the CHEW app to store a database of
barcodes for WIC-approved items, together with all the necessary
metadata about the items, such as their names (e.g., whole milk)
and quantities (e.g., 16 ounces). By matching a scanned barcode
with the barcode stored in a database on the smartphone the app
would retrieve the information it needs.

Developing a barcode scanning tool ourselves would rein-
vented solutions that already exist, so we explored available pack-
ages and chose ZXing (“Zebra Crossing”) [8], which is an open-
source multi-format barcode image-processing library. As dis-

cussed in Section 5.2, one limitation we faced during the CHEW
app development was supporting app features in the absence of
network connectivity since we could not rely on WIC families
having a data plan or Wi-Fi access within the grocery stores.
Using ZXing library was advantageous here because it used the
built-in camera on mobile devices to scan and decode barcodes on
the device, without the need to communicate with a remote server.

To support different user preferences and simply CHEW app
use, we allowed WIC participants to shop in two different ways:
(1) either shop for the whole family at once or (2) shop for each
family member separately. They could interchange these shopping
methods any number of times during their shopping.

Figure 3 shows the main screen of the CHEW app. A user can
click the “Scan the Barcode” button, where after scanning an item
the app would display all family members who could get this item
based on the information in their vouchers. A WIC shopper could
then select the number of items to get for each family member.
Conversely, the shopper could select items for a specific family
member by clicking the “Choose a Family Member” button. In
this case, they would be presented with a ListView [4] of family
members, where selecting a specific member opens up the mem-
ber’s profile and allows the shopper to view the items this partic-
ular member can get, what this member already bought, and an
option to scan items specifically for this member.

While a user scans items, the CHEW app queries the Content
Provider that stores data for the items and vouchers in the SQLite
database to check whether an item is approved and if its limit has
been reached. Programming this logic in the app was one of the
hardest technical challenges we faced, as discussed in Section 5.1.

4.2.2 Providing the Fruit and Vegetable Produce Calculator

As discussed in Section 2, many WIC benefit users have limited
numeracy skills, which make it hard for them to calculate the
prices of fresh fruits and vegetables and keep track of the prices to
know when they reach the limit specified on the cash value
vouchers for each family member. As a result, many participants
often do not use the cash value voucher to the full extent. We
therefore had to devise a solution to help WIC participants get the
most out of their cash value vouchers.

A WIC cash value voucher specifies the dollar amount up to
which participants can buy fruits and vegetables, which include
packaged fresh produce, packaged frozen produce, loose produce

Figure 2: Development Process for the CHEW App.

Figure 3. App’s Main Screen.

with a price per item, and loose produce with a price per pound.
We created a separate Android Activity (which is a single, fo-
cused thing that a user can do, such as interacting with the user via
the touchscreen interface on a mobile device) to deal with the cash
value voucher. As shown in the middle of Figure 3, a user can
click on the “Buying Produce” button to open up an Activity that
presents the user with information about the total price allowed
for the family, total amount already spent, and total amount left,
as well as amounts for each family member separately. The user is
also presented with options for buying four different kinds of
produce, e.g., packaged fresh, packaged frozen, loose produce
with a price per item, and loose produce with a price per pound.

One goal of the CHEW project is to analyze the shopping data
to study the impact of the CHEW app on WIC participant pur-
chasing choices. It was therefore important for the CHEW app to
collect the names of all items that participants buy, while still
minimizing user involvement. Meeting this goal was difficult
when dealing with produce since prices change often and this
information is not stored in the smartphone database. As a result,
we were unable to fully automate this process in our prototype—a
more comprehensive solution would likely involve close interac-
tions with electronic pricing systems used by grocery stores par-
ticipating in the WIC program.

Since packaged fresh and frozen produce have barcodes, we
allowed users to simply scan the packages to get the product
names. They then entered the prices and selected the quantities of
products and the family members these products apply to. Since
participants can scan the packages, they were also able to shop for
the packaged produce portion of the cash value voucher when
they were scanning items from their regular vouchers. If they
scanned a produce item, they would simply get transferred to the
Activity for handling produce.

Since it was infeasible to scan loose produce (which lack
standard barcodes), participants had to manually enter the names
of the items. Typing the whole name of an item would be cumber-
some for a user, so we used the autocomplete option supported by
Android’s AutoCompleteTextView [4] class. We implemented this
feature by creating a custom CursorAdapter [4] that implements a
Filterable [4] interface and connecting it to an AutoComplete-
TextView, which then displayed to users the suggested names of
fruits and vegetables stored in the Content Provider.

Shopping for “loose produce per item” requires a user to enter
the price of an item. Likewise, shopping for “loose produce per
pound” requires a user to weigh the produce and calculate the
price. Once again, our goal was to make this process as simple for
users as possible. Since users had to weigh the items on a scale,
we reasoned that finding a widget to mimic an actual produce
scale would be the most intuitive interface. We selected the An-
droid wheel widget [9].

Figure 4 shows a closeup of how we use this widget in our
CHEW app. Users can scroll the left wheel to choose the pounds
as they see them on the actual scale, and they can scroll the right
wheel to select the increments. They could then select the family
member who gets the item and enter the produce name and its
price per pound. Due to minor discrepancies, the app would cal-
culate only the approximate cost of produce, but our periodical
meetings with WIC participants indicated that this was still quite
helpful to them.

As WIC participants shop for produce, the CHEW app keeps
track of the prices and updates the activity’s screen with the dollar
amounts spent and left on the voucher. Participants can therefore
concentrate on their shopping, rather than calculating and man-
aging prices manually, which is tedious and error-prone.

4.2.3 Automatically Keeping Track of Selections

The CHEW app keeps track of all food items that WIC partici-
pants choose, including the quantities and the sizes of each. A
WIC shopper can go to each family member’s profile and view
items selected for each member. Figure 5 shows an Activity that
displays chosen products in a ListView. We wrote a custom Sim-
pleCursorAdapter [4] to display the items in a similar format as
presented on the vouchers (shown in Figure 7).

For example, vouchers specify limits either on the number of
items, on the number of ounces, or on the dollar amount. Ourr
custom adapter therefore leverages different ListView row layouts
to display either the number of items, the ounces, or the dollars.
ListView separators also help partition items into categories.

4.3 Automating the Tailoring and Delivery of Nutrition
Education

In addition to assisting WIC families with their shopping experi-
ence, as described above, the CHEW app is also intended to pro-
vide nutrition education, as described below.

4.3.1 Providing Healthy and Engaging Snack Recipes

Our CHEW app allows parents and guardians to view and select
recipes of easy-to-prepare healthy snack recipes for their children.
Each recipe contains a limited number of steps, shown via both
text and pictures to make it more entertaining and easier to follow.

Figure 5. Items Selected Activity.

Figure 4. Produce per Pound Calculator.

To further simplify this process, the CHEW app reminds partici-
pants to choose some of the recipes before each shopping trip.

When users select a recipe, its ingredients are automatically
uploaded into a shopping list that will be used during a shopping
trip. These ingredients do not necessarily correspond to the items
listed on the WIC vouchers, and participants can buy them with
the vouchers or separately.

To make the CHEW app more engaging, it provides recipe
videos that show how to prepare healthy snacks. Although not all
participants can watch the videos as they are streamed over the
Internet, we included this option so users could use it whenever
they can. Figure 6 shows Android Activities that enable users to
view/choose healthy snack recipes and watch recipe videos.

4.3.2 Sending Healthy Tip Notifications

In addition to providing a gallery of healthy snack recipes, another
component of nutrition education emphasized by the CHEW
project involves healthy tips provided through notifications. The
CHEW app stores a list of general healthy tips in its Content
Provider. Examples of these tips include helping parents to deal
with children who are picky eaters (e.g., parents may need to offer
a new food as many as 15 times before their child will eat it),
appropriate portion sizes for pre-schoolers, and distributing
healthy snacks throughout the day.

The CHEW app uses Android Service, BroadcastReceiver,
and AlarmManager [3,4] components to send notifications to
users at specific time intervals (e.g., every other day, etc.). In
future work, we will perform data analytics to customize notifica-
tions for each participant, depending on participant’s ethnic back-
ground and purchase data, as discussed in Section 7.

5. Resolving Technical Challenges
We faced several technical challenges during the design and
implementation of the CHEW app. Some challenges arose due to
our inability to use efficient Android features, as we had to sup-
port the absence of network connectivity. This section describes
these key challenges and presents our solutions.

5.1 Dealing with Complicated and Unstructured Data That
May Change Frequently

Problems. During the early stages of the CHEW app development
we realized that the app would need to store and process a great

deal of data locally on the smartphone device due to the lack of
network connectivity discussed in Section 4.2.1. In addition to
shopping data, we had to store data containing product descrip-
tions from participating grocery stores and data containing vouch-
ers’ descriptions, which was particularly complicated. Below we
describe techniques for overcoming problems involved with stor-
ing and processing these data efficiently.

A key challenge we faced was how to store and process de-
scriptions of the vouchers that specified limits on the food brands,
quantities, and sizes. This information was not presented in a
common format and it contained complicated logic. Figure 7
shows three examples of such vouchers. The voucher at the top of
the figure allows a user to either get up to a specific quantity of a
particular food, such as 36 oz cereal, or up to a specific number of
a particular product or up to a specific number of a different prod-
uct, but not both, e.g., 3–11.5 to 12 oz frozen or 3–46 to 48 oz
containers of WIC approved juice.

A more complicated example is when a user can get either
some amount of a particular item or any combination of items, but
not both, e.g., 1–3 quart box nonfat dry milk or choose 3 (any
combination) of these: 1 quart buttermilk, 1 can evaporated milk,
14–16 oz tofu. Each user can also get a certain dollar amount
worth of produce items, which is given to them in the form of a
separate type of cash value voucher.

The voucher in the middle of Figure 7 specifies different logic,
e.g., this voucher does not allow a user to get a combination of
items. Finally, the voucher at the bottom of the figure is com-
pletely different from the previous two; it specifies foods for
infants, depending on whether the infant is fully or partially
breastfed or formula fed. The types and the amounts of foods an
infant can get also depend on infant’s age.

The descriptions of vouchers shown in Figure 7 are highly un-
structured, which poses a challenge to storing these data in a
structured manner in a relational database, such as SQLite, while
preserving the logic that goes into descriptions. Moreover, vouch-
ers can be divided and users could either (1) use both vouchers in
one shopping trip or (2) they can split each during two different
shopping trips. Moreover, if users receive their vouchers later than
when they were supposed to receive them, they would get differ-
ent vouchers, containing reduced amounts of allowed foods.

Another challenge was linking the products’ data from stores
with the descriptions on the vouchers for the app to correctly
identify if users’ choices are correct, which was the critical re-
quirement. For example, the data sets provided by grocery stores
contained only specific food names and broader food categories,
such as dairy, while vouchers specified limits on different food
types, such as milk or cheese, within a food category, such as
dairy. We had to find a solution with which the CHEW app un-
derstood the connection between the store data and the voucher
data to allow an app user to make appropriate choices and keep
track of the chosen quantities and the sizes of the food items.

Finally, the WIC approved items in each store often change, as
well as the information on the vouchers, e.g., some food types get
added and some get removed, and the allowed quantities also
change. We therefore needed a solution that would require mini-
mal changes whenever store data sets and vouchers were updated.

Solution. We used data normalization to organize data in the
Android’s SQLite database. We applied third normal form (3NF)
[10,11] to split large amounts of data into small tables. Although
this solution yielded a proliferation of tables, we were able to
provide much more structure to data that initially appeared quite
unstructured, such as the different descriptions of vouchers. 3NF
made our database more flexible by eliminating redundancy and
inconsistent dependency. In particular, it ensured that each table

Figure 6. Viewing Recipes.

had a key, where the non-key attributes were dependent only on
the key and no other attributes.

Design considerations. Applying 3NF excessively is not often
practical. For example, having many small tables may degrade
performance. We therefore applied 3NF only to data that changed
frequently, such as descriptions of vouchers. Below we describe
the process we used to organize the unstructured vouchers’ data in
an Android’s SQLite database.

Design process. Figure 8 shows a portion of the CHEW app’s
SQLite database schema that handles data for a store and the
vouchers. We created identifiers for all possible vouchers (vouch-

er_type). Since vouchers could be split, we treated those vouchers
as different vouchers and created separate identifiers. If users
specified they want to use the whole voucher at once, the app
would simply perform table joins when querying the database. We
used similar logic for the vouchers with reduced amounts of prod-
ucts that participants receive when they come late to pick up the
vouchers.

Since a particular food item can apply to several vouchers, we
also created a unique identifier for a group of voucher identifiers
that this item applies to (vouchers_group_id). For example, a ‘1’
could represent vouchers V1, V2, and V4, that all allow buying
bread. We also created identifies for different food types, such as
cereal or milk (food_type_id).

 Unfortunately, we had to manually put these identifiers and
the unique identifier for a group of vouchers into the databases
received from participating grocery stores (automating this pro-
cess is planned in our future work, as discussed in Section 7). We
then created a lookup table to match food identifiers to the actual
names of the food types (Food_Type_Lookup) and a lookup table
to match vouchers group identifier to the identifiers of each single
voucher (Voucher_Type_Lookup). These lookup tables allowed
us to create linkage between data from the stores and the data in
the vouchers, which was a key feature for making the CHEW app
address the domain requirements presented in Section 2.

To organize the data and allow for uniform database queries,
we created a table (Voucher) that contains each voucher identifier
and three additional columns to specify possible food options
(maximum of three at present), even if voucher descriptions did
have all three of the options. If a voucher specified an option for a
food type, the row would contain the identifier for that food type
(otherwise, it would contain a negative identifier). The hardest
part of our solution was handling data specifying that some foods
can be bought in a combination. We thus identified a food type
option that might allow for combinations (food_option2) and
created a separate column in the table, specifying a number of
combination items (option2_quantity). If combinations were not
allowed for a particular food type, the column contained a zero.

We also created a separate table with food type identifier as a
key (Voucher_Food_Lookup); this table specified the allowed
quantities and sizes of food types. We again had to devise a struc-
tured way to incorporate data regarding which items in the table
could be bought in combination. To solve this problem, we creat-
ed a separate column to contain links to other food types in the
same table (substitute).

Figure 7. Examples of WIC Vouchers.

Figure 8. Portion of Database Schema.

For example, some vouchers allowed buying buttermilk, evap-
orated milk, and tofu in any combination of three. If we identified
a buttermilk as ‘7’, evaporated milk as ‘8’, and tofu as ‘9’, then
‘7’ would point to ‘8’, ‘8’ would point to ‘9’, and ‘9’ would point
to ‘7’. If combinations were not allowed, the column contained
negative identifier. This design allowed us to query the Voucher
table to check if a number exists for the combination of items, as
well as use this information to query this table to see which actual
food types could be bought in a combination.

While majority of the vouchers were relatively similar, the
vouchers for infants were different, as shown in Figure 6. We
therefore separated information on these vouchers into separate
database tables (not shown in the figure).

Outcome. Having organized the unstructured vouchers’ data
in the SQLite database, our CHEW app had to use complicated
queries involving multiple table joins to get the necessary infor-
mation. Applying 3NF, however, reduced the possible number of
changes to the database and the code that we would make in the
future by minimizing the dependencies between data. This ap-
proach also decoupled the data and the logic for using the data by
specifying the data in a database (even the data for the logic), but
actually performing the logic programmatically.

5.2 Supporting the Absence of Network Connectivity

Problems. Many families participating in the WIC program lack
data plans or Internet connectivity at home, which posed chal-
lenges for providing certain CHEW app features, such as down-
loading images of recipes from a remote HTTP server and stream-
ing recipe videos. Our goal was to ensure that guardians and their
children would view these recipes and that the recipes would be
easy to follow.

To be more engaging, the recipes needed to contain pictures of
each step, ideally presented as step-by-step high-resolution vid-
eos. To avoid requiring WIC participants to devote all their
smartphone memory to storing this content, the videos need to be
streamed and the pictures need to be downloaded from a remote
server and cached on a device, which motivates the need for
network connectivity.

Since we could not rely on WIC families having Internet ac-
cess, we therefore had to ensure that the CHEW app would oper-
ate properly by providing engaging recipes, without being net-
work-dependent. One option was to exclude pictures of every
recipe step and to only include the images of a limited number of
recipes that the app could store locally on the device. Reading
recipe steps in plain text, however, would be less compelling for
participants and would require extra user involvement. We there-
fore had to display pictures of each recipe and each recipe step to
make it more appealing to users, but had to find a solution to do
so locally on the device.

Solution. Since it is problematic to store a large number and
sizes of images, we had to find a compromise with our stakehold-
ers. We ended up using only a small number of recipes, where
each recipe contains at most two steps, thus at most two pictures,
and where all the images are small. The CHEW app stores the
images in the Android resources (res) folder and the images’ paths
in the SQLite database.

Outcome. While this solution is not the most efficient way to
deal with images on Android, it was necessary given the con-
straints we faced. As ubiquitous access to Internet connectivity
improves, we hope to revisit the full potential of more efficient
ways to store, retrieve, and display images.

We also left the recipe videos option for the users even though
they might not be able to watch the videos often. We used the
YouTube API [12] to stream the videos; a user can view videos’

thumbnails displayed in a ListView where clicking a thumbnail
would show the video to the user (Figure 6). In future work we
may plan to have a single Activity that displays a recipe with its
picture and video. If Internet connectivity is present, we will
display a video thumbnail for the user to watch a recipe video if
necessary and if connectivity is not present, we will simply dis-
play a recipe image only.

5.3 Finding an Efficient Way to Analyse Data

Problems. A key goal of the CHEW project is to collect and
evaluate participants’ shopping data to access the impact of nutri-
tion education provided through the app and make necessary
adjustments to the program. When WIC shoppers use paper
vouchers, however, it is infeasible to collect their shopping choic-
es to analyse this information for purposes of nutrition studies.
We therefore needed a solution that would allow efficient data
analytics to aid nutrition studies.

Solution. To implement this solution, we employed Open
mHealth [5], which is an open architecture designed to improve
integration among mobile health solutions. The Open
mHealth platform fosters collaboration between software devel-
opers, clinical experts, and health researchers to addresses the
problem of drawing meaning and scientifically valid inferences
from collected mHealth data, often involving lots of bias and
variability, by presenting more sophisticated and effective tools
for data visualization and analysis [13].

Open mHealth overview. As shown in Figure 9, Open
mHealth helps to evolve the mHealth ecosystem from a silo’d
architecture to a “narrow-waisted” architecture, where a common
communications protocol acts as a simple point of commonality at
the narrow waist, and where innovation flourishes through open
interfaces or APIs, both above and below the waist.

Open mHealth provides the following features [14]:
• Software reusability to aid in the development of new applica-

tions through sharing of software components amongst soft-
ware developers and health innovators.

• Standardization, by providing a shared set of open APIs for
back-end data stores to enable client software with a uniform
way to access data.

Figure 10 shows the main Open mHealth components, which are
defined as the modular software units outlined below:
• Data Storage Unit (DSU). A DSU provides a uniform way to

access data through a series of API calls.
• Data Processing Unit (DPU). A DPU represents a unit of

work to be performed on JSON data. It is the building block
for extracting relevant features from data streams.

Figure 9. Stovepipe vs. Hourglass Architecture.

• Data Visualization Unit (DVU). A DVU enables the visual
presentation of features processed by a DPU and patterns.
Open mHealth visualization modules can combine data from

many mobile apps and devices. Likewise, evaluations modules
can be embedded directly into an app to improve clinical impact.

Open mHealth configuration. We hosted a cloud-based server
using Amazon Web Services [15]. As shown in Figure 1, the
server runs a MongoDB database that interfaces with Open
mHealth. The server database stores the products data from the
grocery stores, which are uploaded to the SQLite database on a
mobile device via Android’s IntentService [3,4] when the app first
runs. The app can periodically uploads the users’ shopping data
back to the server for future analysis, assuming users can obtain
network connectivity, e.g., during their visit to the WIC clinic.

Outcome. By hosting a cloud-based server that runs Open
mHealth, we created a platform that allows efficient processing of
collected data to derive useful insights for action. Open mHealth
also promotes easier sharing of data across platforms, which will
enhance future project iterations.

5.4 Applying Software Patterns

Problems. As mentioned in Section 5.1, we expect frequent
changes to our CHEW app, e.g., as vouchers and products get
added, updated, or removed from the program. We expended
considerable effort in making the database schema flexible to
change, as shown in Figure 8. We also designed our app to require
minimal changes to the code as requirements change by applying
software principles and patterns by both using the patterns our-
selves and by applying Android frameworks that leverage patterns
to enhance code reuse and make the app more flexible to change.

Solutions. We used the commonality and variability [16] anal-
ysis to separate the varying parts of the application from the non-
varying parts. For example, we had to represent users of the app
and their vouchers. We concluded that the vouchers users receive
represent the varying parts since they may get different ones every
time and since vouchers’ descriptions often change. Thus, apply-
ing the Commonality and Variability analysis, we identified that
the Strategy pattern [17] would help decouple interfaces from
implementations so the implementations could vary without af-
fecting client code that used the common interfaces.

Applying Strategy, we created an abstract class Member, rep-
resenting an app user, and several concrete classes that inherit
from Member, which represent that actual user types, such as 3 to
4 year old child (Figure 11). We then created interfaces for regular

voucher and cash value vouchers, and several classes representing
a specific voucher that implement one of the interfaces.

Using the Strategy pattern, where each concrete Member class
is composed with appropriate vouchers, we were also able to
apply the Composite Reuse principle (CRP) [18], which favors
composition over inheritance. This design increased the flexibility
of our CHEW app, both by encapsulating vouchers (the family of
algorithms) and by allowing the users to change vouchers they
want to use at runtime.

As discussed in Section 5.1, users could spend all the vouchers
during a single shopping trip or divide them between separate
trips. To maximize flexibility, we applied the Factory Method
pattern [17] to allow CHEW app users to select vouchers they
want to use at runtime. This pattern encapsulates the creation of
the types of vouchers by letting subclasses decide which vouchers
to create. We applied this pattern to create an abstract class
VoucherFactory and the two concrete classes that inherit from it,
the CashVoucherFactory and the RegularVoucherFactory that
create the specific types of vouchers.

We also used many Android frameworks in our CHEW app
that themselves leverage software patterns to aid in code reuse and
ease the application development by encapsulating tedious and
error-prone details from app developers. For example, our appli-
cation uses AsyncQueryHandler [4] to execute Content Provider
operations asynchronously without blocking the UI since Asyn-
cQueryHandler provides callback methods that are executed after
the completion of Content Provider operations.

AsyncQueryHandler is implemented using the Proactor and
Asynchronous Completion Token patterns [20] (Figure 12). It uses
the Proactor pattern to simplify asynchronous application devel-
opment by splitting an app’s functionality into async operations
(such as database queries) and completion handlers that use the
results of asynchronous operations to implement the app’s busi-
ness logic. Likewise, it uses the Aysnchronous Completion Token
pattern to allow an app to efficiently demultiplex and process the
responses of asynchronous operations. By applying these two
patterns together, AsyncQueryHandler allows decoupling app’s
independent asynchrony mechanisms from app specific function-
ality, and simplifying event-handling algorithms.

Our CHEW app also uses Android AsyncTask framework [4]
to simplify the creation of long running tasks, such as querying
the database, without the need to communicate with Threads and
Handlers. The AsyncTask framework leverages the Half-
Sync/Half-Async pattern [20,21] to integrate synchronous and
asynchronous operations in an efficient and well-structured man-

Figure 10. Open mHealth Components.

Figure 11. Strategy and Factory Method.

Figure 12. Proactor and Asynchronous Completion Token.

ner by decoupling these operations to simplify concurrent pro-
gramming while supporting execution efficiency (Figure 13).
Decomposing overall system intro three layers (i.e., synchronous,
asynchronous, and queueing), AsyncTask centralizes the inter-
layer communication because the queueing layer mediates all
interactions; and synchronization policies in each layer are decou-
pled such that each layer may use different concurrency strategies.

We use Android’s IntentService framework to pull data from a
remote Open mHealth server to the app’s SQLite database on the
app’s first run. The IntentService framework implements the
Command Processor pattern [19] to encapsulate the request for a
service, the data download request in our case, as an object that is
passed to a Service to execute (Figure 14). The use of Command
Processor ensures that the client’s thread is not blocked for dura-
tion of command processing, and that different users can com-
municate with a service in different ways via commands. Thus,
the same code can be reused for multiple purposes.

Outcome. Applying software patterns and Android frame-
works that leverage software patterns enhance the maintainability
and flexibility of our CHEW app. Android frameworks also al-
lowed us to focus on the app requirements and minimize devel-
opment time by abstracting away many low-level implementation
details. In addition, they increased code reuse since we could
simply extend their behaviours to support different app needs.

6. Related Work
This section compares our work on the CHEW app with related
research and development efforts. The San Diego WIC App for
Android [22] and iOS [23] notifies users with updates about WIC
activities, promotions, and events. It also provides information on
healthy eating and recipes made from WIC approved foods.

The WIC Calculators Android [24] and iOS [25] app is de-
signed for WIC agencies, but not for actual participants, to aid in
determining infant formula issuance amounts, identifying prod-
ucts that meet minimum specification requirements for whole
grain/whole wheat products.

The EBT Shopper Android and iOS app [26] simplifies WIC
participants’ shopping experience by allowing participants to
determine WIC eligible items as they scan products in a store, and
to list the items that can be purchased based on the WIC food
package. It is used in states with electronic WIC benefits (not
paper vouchers). It is not clear from the available documentation
how this app keeps track of each individual person’s selections
and WIC voucher limits.

The aforementioned apps provide only a limited support to

WIC participants compared to the app we are creating. They
either serve as a shopping tool (The EBT Shopper app) or as a
nutrition education tool (The San Diego WIC app), or they are not
even used by WIC participants directly (The WIC Calculators
app). Our app attempts to give the most benefits to WIC partici-
pants by serving both as a shopping tool and as a nutrition educa-
tion tool, simplifying and automating the previously cumbersome
shopping experience of participants and helping them to have
healthier lifestyles.

7. Concluding Remarks
This paper described the CHEW app, which is implemented on
the Android and Open mHealth platforms to simplify the shop-
ping experience of participants in the Tennessee WIC program
and provide nutrition education. WIC participants in Tennessee
currently use paper vouchers to get supplemental nutritious foods.
These types of vouchers are challenging for participants to use
since they must manually keep track of the products they are get
and the quantities of each, which is tedious and error prone.

Many WIC participants also have issues with numeracy, so
they often do not use their cash value vouchers to buy produce
since they cannot easily calculate and keep track of the prices in
the store. Nutrition education provided in between WIC appoint-
ments is meant to encourage and support healthy lifestyle choices.

Our CHEW app helps alleviate problems with paper vouchers
by allowing participants to scan products in the store and auto-
matically identify if they can get a product based on their voucher
prescription. The app also keeps track of its allowed quantities
and sizes and provides an easy-to-use calculator of the prices of
produce items to help participants use their cash value vouchers to
the full extent. The CHEW app also serves as a nutrition educa-
tion tool by providing healthy tips and engaging snack recipes.

Our experience in developing and applying the CHEW app
thus far has yielded the following lessons learned:
• Maintaining consistency between databases manually is

tedious and error-prone. We had to manually edit the data-
base tables received from participating grocery stores to link
them with the tables that store vouchers’ descriptions (we
manually put the identifiers for different food types and
voucher groups). We want to automate this process in future
work, e.g., by employing machine-learning techniques to as-
sign values in a column of a table based on the observed data
in other columns. We plan to study the feasibility of this solu-
tion and evaluate its ability to produce accurate results.

• Data analytics solutions are needed to provide tips that are
customized for each user. Our current CHEW app provides
general healthy tips for each user. This feature can be im-
proved to enhance nutrition education by personalizing tips
based on user’s shopping choices and ethnic background. For
example, participants could be encouraged to buy more apples
and carrots to receive a sufficient amount of dietary fiber that
improves digestive health and extends the feeling of fullness.
Working with our stakeholders, we also learned that ethnic
background plays an important role when deciding which
foods should be avoided to stay healthy. Our future work will
therefore develop data analytics solutions to analyse user’s
shopping history, considering user’s ethnic background, to
provide tips tailored for each user, which will further enhance
nutrition education.

• Assessing the impact of the CHEW app on enhancing nu-
trition education. As described in Section 5.3, we integrated
the Open mHealth platform to provide effective means of vis-
ualizing the collected participants’ shopping data to aid nutri-
tion studies in evaluating the impact of the app on enhancing

Figure 13. Half-Sync/Half-Async.

Figure 14. Command Processor.

nutrition education. Although we spent a lot of time under-
standing Open mHealth components and integrating them into
our solution, much work remains to study the various compo-
nents of Open mHealth, such as Data Visualization Units
(DVUs), to aid nutrition studies in evaluating the collected da-
ta more efficiently.

• Leveraging mobile Augmented Reality to further simplify
participants’ shopping experience. Mobile Augmented Re-
ality is a new approach to visualizing cyber information on top
of physical imagery [27]. In future work we plan to support
WIC vouchers for special user groups consisting of partici-
pants with food allergies, lactose intolerance, and gluten intol-
erance. Since these participants have more limited options of
the items than the non-special category participants, they
might not easily find the approved products in the store. We
therefore plan to use mobile Augmented Reality to help the
participants with special voucher categories locate approved
items faster in the grocery store [27,28]. For example, partici-
pants would point their phone at the store shelf, and the app
would automatically recognize all the gluten-free products and
mark them for the user.

• Supporting automatic store detection. Our CHEW app cur-
rently asks users to manually select the grocery store where
they plan to shop. In future work we plan to enhance the app
to automatically detect the appropriate store based on its loca-
tion. The app could store the locations of participating stores
and detect a location to identify a particular store when a user
comes to shop. This capability would require network connec-
tivity, however, which we cannot support consistently at pre-
sent. As more WIC participants gain Internet access, however,
this feature will become more useful.

• Supporting multiple platforms. We are currently developing
the CHEW app for Android platform. This choice poses limi-
tations because we cannot support participants who use other
mobile operating platforms. In future work we are therefore
planning to create a hybrid app that embeds HTML5 inside a
thin native container to combine elements of both native and
HTML5 apps (and thus allow both online and offline connec-
tivity) to support multiple mobile operating platforms.

Acknowledgments
This Project was supported by Agriculture and Food Initiative
Grant #2011-68001-30113, from the USDA National Institute of
Food and Agriculture, Integrated Research, Education, and Exten-
sion to Prevent Childhood Obesity program – USDA-NIFA-
AFRI-003327.

References
1. USDA: United States Department of Agriculture. Food and Nutrition

Service: Women, Infants and Children (WIC).
www.fns.usda.gov/wic/about-wic-wic-glance. Accessed Jan 2014.

2. Department of Health: About WIC. http://health.state.tn.us/wic/.
Accessed Jan 2014.

3. Meier, R. Professional Android 4 Application Development. John
Wiley & Sons, 2012.

4. Murphy, M. L. The Busy Coder’s Guide to Android Development.
CommonsWare, 2013. commonsware.com/Android/.

5. Open mHealth. openmhealth.org. Accessed Jan 2014.
6. mongoDB. www.mongodb.org. Accessed Jan 2014.
7. SQLite. www.sqlite.org. Accessed Jan 2014.
8. zxing: Multi-format 1D/2D barcode image processing library with

clients for Android, Java. code.google.com/p/zxing. Accessed Jan
2014.

9. Android-wheel: Android Picker widget. code.google.com/p/android-
wheel/. Accessed Jan 2014.

10. Kreibich, J. A. Using SQLite. O’Reilly Media, 2010.
11. Microsoft Support: Description of the database normalization basics.

support.microsoft.com/kb/283878. Accessed Jan 2014.
12. Google Developers: YouTube Android Player API.

developers.google.com/youtube/android/player. Accessed Jan 2014.
13. Chen, C., Haddad, D., Selsky J., Hoffman, J. E., Kravitz, R. l.,

Estrin, D. E., and Sim, I. Making Sense of Mobile Health Data: An
Open Architecture to Improve Individual-and Population-Level
Health. Journal of Medical Internet Research 14, 4 (2012), p10.
www.jmir.org/2012/4/e112. Accessed Jan 2014.

14. Open mHealth: Developers. openmhealth.org/developers. Accessed
Jav 2014.

15. Amazon Web Service. aws.amazon.com/. Accessed Jan 2014.
16. Coplien, J., Hoffman, D. and Weiss, D. Commonality and

Variability in Software Engineering. IEEE Software 15, 6 (1998),
37-45.

17. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley,
1994.

18. Knoernschild, K. Java Design: Objects, UML, and Process.
Addison-Wesley, 2001.

19. Buschmann, F., Meunier, R., Rohert, H., Sommerlad, P. and Stal, M.
Pattern-Oriented Software Architecture Volume 1: A System of
Patterns. John Wiley & Sons, 1996.

20. Schmidt, D., Stal, M., Rohnet, H. and Buschmann F. Pattern-
Oriented Software Architecture Volume 2: Patterns for Concurrent
and Networked Objects. John Wiley & Sons, 2000.

21. Schmidt., D. C. and Cranor., C. D. Half-Sync/Half-Async: An
Architectural Pattern for Efficient and Well-structured Concurrent
I/O. Proc. 2nd Pattern Languages of Programs ’95.

22. San Diego State University: California WIC. SDSU WIC Android
App Screenshots. www.sdsuwic.org/wic-program/wic-san-diego-
android-app-now-available.html. Accessed Jan 2014.

23. San Diego State University: California WIC. Install WIC San Diego
iPhone App. sdsuwic.org/wic-program/wic-san-diego-iphone-app-
coming-soon.html. Accessed Jan 2014.

24. Google play. WIC Calculators.
play.google.com/store/apps/details?id=com.bluepanestudio.Formula
AndWholeGrainCalculator&hl=en. Accessed Jan 2014.

25. iTunes Preview. WIC Calculators. itunes.apple.com/us/app/wic-
calculators/id501212303?mt=8. Accessed Jan 2014.

26. EBT Shopper: WIC shopping, simplified. http://ebtshopper.com.
Accessed Jan 2014.

27. Jules White, Douglas C. Schmidt, and Mani Golparvar-
Fard, “Applications of Augmented Reality,” IEEE Proceedings Spe-
cial issue on Applications of Augmented Reality, 2014 (to appear).

28. IBM Research. Augmented reality makes shopping more personal:
New mobile application from IBM Research helps both consumers
and retailers. www.research.ibm.com/articles/augmented-real-
ity.shtml. Accessed Jan 2014.

	

