skip to main content
10.1145/2695664.2695707acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

pFOIL-DL: learning (fuzzy) EL concept descriptions from crisp OWL data using a probabilistic ensemble estimation

Published: 13 April 2015 Publication History

Abstract

OWL ontologies are nowadays a quite popular way to describe structured knowledge in terms of classes, relations among classes and class instances.
In this paper, given an OWL target class T, we address the problem of inducing EL(D) concept descriptions that describe sufficient conditions for being an individual instance of T. To do so, we use a Foil-based method with a probabilistic candidate ensemble estimation. We illustrate its effectiveness by means of an experimentation.

References

[1]
A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and relations. J. of Artificial Intelligence Research, 36:1--69, 2009.
[2]
F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI, pages 364--369, 2005. Morgan-Kaufmann Publishers.
[3]
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.
[4]
R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., 1999.
[5]
H. Blockeel and L. D. Raedt. Top-down induction of first-order logical decision trees. Artif. Intell., 101(1-2):285--297, 1998.
[6]
S. Bloehdorn and Y. Sure. Kernel methods for mining instance data in ontologies. In Proc. of ISWC, LNCS 4825, pages 58--71. Springer Verlag, 2007.
[7]
F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description logic reasoner. In 2008 Int. Conf. on Fuzzy Systems (FUZZ-08), pages 923--930. IEEE Computer Society, 2008.
[8]
M. Cerami and U. Straccia. On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm. Information Sciences, 227:1--21, 2013.
[9]
M. Chitsaz, K. Wang, M. Blumenstein, and G. Qi. Concept learning for EL++; by refinement and reinforcement. In Proc. of PRICAI, pages 15--26, Berlin, Heidelberg, 2012. Springer-Verlag.
[10]
C. d'Amato and N. Fanizzi. Lazy learning from terminological knowledge bases. In Proc. of ISMIS 2006, LNCS 4203, pages 570--579. Springer Verlag, 2006.
[11]
C. d'Amato, N. Fanizzi, and F. Esposito. Query answering and ontology population: An inductive approach. In Proc. of ESWC, LNCS 5021, pages 288--302. Springer Verlag, 2008.
[12]
C. d'Amato, N. Fanizzi, B. Fazzinga, G. Gottlob, and T. Lukasiewicz. Ontology-based semantic search on the web and its combination with the power of inductive reasoning. Annals of Mathematics and Artificial Intelligence, 65(2-3):83--121, 2012.
[13]
M. Drobics, U. Bodenhofer, and E.-P. Klement. Fs-Foil: an inductive learning method for extracting interpretable fuzzy descriptions. Int. J. of Approximate Reasoning, 32(2-3):131--152, 2003.
[14]
N. Fanizzi. Concept induction in description logics using information-theoretic heuristics. Int. J. Semantic Web Inf. Syst., 7(2):23--44, 2011.
[15]
N. Fanizzi, C. d'Amato, and F. Esposito. DL-FOIL concept learning in description logics. In Proc. of ILP, LNCS 5194, pages 107--121. Springer, 2008.
[16]
N. Fanizzi, C. d'Amato, and F. Esposito. Induction of classifiers through non-parametric methods for approximate classification and retrieval with ontologies. Int. J. Semantic Computing, 2(3):403--423, 2008.
[17]
N. Fanizzi, C. d'Amato, and F. Esposito. Learning with kernels in description logics. In Proc. of ILP, LNCS 5194, pages 210--225. Springer Verlag, 2008.
[18]
N. Fanizzi, C. d'Amato, and F. Esposito. Reduce: A reduced coulomb energy network method for approximate classification. In Proc. of ESWC, LNCS 5554, pages 323--337. Springer, 2009.
[19]
N. Fanizzi, C. d'Amato, and F. Esposito. Induction of concepts in web ontologies through terminological decision trees. In Proc. of ECML LNCS 6321, Part I, pages 442--457. Springer Verlag, 2010.
[20]
N. Fanizzi, C. d'Amato, and F. Esposito. Towards the induction of terminological decision trees. In Proc. of ACM SAC, pages 1423--1427, 2010. ACM.
[21]
N. Fanizzi, C. d'Amato, and F. Esposito. Induction of robust classifiers for web ontologies through kernel machines. J. Web Sem., 11:1--13, 2012.
[22]
N. Fanizzi, C. d'Amato, F. Esposito, and P. Minervini. Numeric prediction on OWL knowledge bases through terminological regression trees. Int. J. Semantic Computing, 6(4):429--446, 2012.
[23]
P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
[24]
S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL class descriptions on very large knowledge bases. Int. J. Semantic Web Inf. Syst., 5(2):25--48, 2009.
[25]
L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence, 26(2):139--159, Apr. 2007.
[26]
J. Iglesias and J. Lehmann. Towards integrating fuzzy logic capabilities into an ontology-based inductive logic programming framework. In Proc. of ISDA. IEEE Press, 2011.
[27]
G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic: theory and applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.
[28]
S. Konstantopoulos and A. Charalambidis. Formulating description logic learning as an inductive logic programming task. In Proc. FUZZ-IEEE, pages 1--7. IEEE Press, 2010.
[29]
N. Landwehr, K. Kersting, and L. D. Raedt. Integrating Naïve Bayes and FOIL. Journal of Machine Learning Research, 8:481--507, 2007.
[30]
J. Lehmann. Hybrid learning of ontology classes. In Proc. of MLDM, LNCS 4571, pages 883--898. Springer Verlag, 2007.
[31]
J. Lehmann. DL-learner: Learning concepts in description logics. Journal of Machine Learning Research, 10:2639--2642, 2009.
[32]
J. Lehmann, S. Auer, L. Bühmann, and S. Tramp. Class expression learning for ontology engineering. J. Web Sem., 9(1):71--81, 2011.
[33]
J. Lehmann and C. Haase. Ideal downward refinement in the EL\mathcal{EL} description logic. In Proc. of ILP. Revised Papers, pages 73--87, 2009.
[34]
J. Lehmann and P. Hitzler. Foundations of Refinement Operators for Description Logics. In Proc. of ILP, LNAI 4894, pages 161--174. Springer, 2008.
[35]
J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators. Machine Learning, 78(1-2):203--250, 2010.
[36]
F. A. Lisi and U. Straccia. Towards learning fuzzy dl inclusion axioms. In 9th International Workshop on Fuzzy Logic and Applications (WILF-11), volume 6857 of Lecture Notes in Computer Science, pages 58--66, Berlin, 2011. Springer Verlag.
[37]
F. A. Lisi and U. Straccia. Dealing with incompleteness and vagueness in inductive logic programming. In Proc. of CILC-13, CEUR 1068, pages 179--193. CEUR Electronic Workshop Proceedings, 2013.
[38]
F. A. Lisi and U. Straccia. A logic-based computational method for the automated induction of fuzzy ontology axioms. Fundamenta Informaticae, 124(4):503--519, 2013.
[39]
F. A. Lisi and U. Straccia. A system for learning GCI axioms in fuzzy description logics. In Proc. DL-13, CEUR 1014, pages 760--778. CEUR Electronic Workshop Proceedings, 2013.
[40]
T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description logics for the semantic web. Journal of Web Semantics, 6:291--308, 2008.
[41]
P. Minervini, C. d'Amato, and N. Fanizzi. Learning probabilistic description logic concepts: Under different assumptions on missing knowledge. In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC '12, pages 378--383, New York, NY, USA, 2012. ACM.
[42]
P. Minervini, C. d'Amato, and N. Fanizzi. Learning terminological bayesian classifiers - A comparison of alternative approaches to dealing with unknown concept-memberships. In Proc. of CILC, CEUR 857, pages 191--205, CEUR Electronic Workshop Proceedings, 2012.
[43]
P. Minervini, C. d'Amato, N. Fanizzi, and F. Esposito. Transductive inference for class-membership propagation in web ontologies. In Proc. of ESWC, LNCS 7882, pages 457--471. Springer Verlag, 2013.
[44]
P. Minervini, N. Fanizzi, C. d'Amato, and F. Esposito. Rank prediction for semantically annotated resources. In Proc. of ACM SAC, pages 333--338, 2013. ACM.
[45]
B. Motik and R. Rosati. A faithful integration of description logics with logic programming. In Proc. of IJCAI, pages 477--482, 2007. Morgan Kaufmann Publishers Inc.
[46]
M. Nickles and A. Rettinger. Interactive relational reinforcement learning of concept semantics. Machine Learning, 94(2):169--204, 2014.
[47]
OWL 2 Web Ontology Language Document Overview. http://www.w3.org/TR/2009/REC-owl2-overview-20091027/. W3C, 2009.
[48]
OWL 2 Web Ontology Language Profiles: OWL 2 EL. http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/#OWL_2_EL. W3C, 2009.
[49]
J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239--266, 1990.
[50]
A. Rettinger, U. Lösch, V. Tresp, C. d'Amato, and N. Fanizzi. Mining the semantic web - statistical learning for next generation knowledge bases. Data Min. Knowl. Discov., 24(3):613--662, 2012.
[51]
A. Rettinger, M. Nickles, and V. Tresp. Statistical relational learning with formal ontologies. In Proc. of ECML, LNCS 5782, Part II, pages 286--301. Springer Verlag, 2009.
[52]
G. Rizzo, C. d'Amato, N. Fanizzi, and F. Esposito. Assertion prediction with ontologies through evidence combination. In Proc. of URSW, LNCS 7123, pages 282--299. Springer Verlag, 2013.
[53]
G. Rizzo, C. d'Amato, N. Fanizzi, and F. Esposito. Towards evidence-based terminological decision trees. In Proc. of IPMU, Part I, CCIS 442, pages 36--45. Springer, 2014.
[54]
G. Rizzo, N. Fanizzi, C. d'Amato, and F. Esposito. Prediction of class and property assertions on OWL ontologies through evidence combination. In Proc. of WIMS, pages 45:1--45:9, 2011. ACM.
[55]
M. Serrurier and H. Prade. Improving expressivity of inductive logic programming by learning different kinds of fuzzy rules. Soft Computing, 11(5):459--466, 2007.
[56]
D. Shibata, N. Inuzuka, S. Kato, T. Matsui, and H. Itoh. An induction algorithm based on fuzzy logic programming. In Proc. of PAKDD, LNCS, pages 268--273. Springer, 1999.
[57]
U. Straccia. Description logics with fuzzy concrete domains. In Proc. of UAI, pages 559--567, 2005. AUAI Press.
[58]
U. Straccia. Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies in Informatics Series. Chapman & Hall, 2013.
[59]
L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338--353, 1965.

Cited By

View all
  • (2024)A preferential interpretation of MultiLayer Perceptrons in a conditional logic with typicalityInternational Journal of Approximate Reasoning10.1016/j.ijar.2023.109065164(109065)Online publication date: Jan-2024
  • (2024)PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologiesFuzzy Sets and Systems10.1016/j.fss.2024.109048(109048)Online publication date: Jun-2024
  • (2023)Reverse engineering of temporal queries mediated by LTL ontologiesProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/360(3230-3238)Online publication date: 19-Aug-2023
  • Show More Cited By

Index Terms

  1. pFOIL-DL: learning (fuzzy) EL concept descriptions from crisp OWL data using a probabilistic ensemble estimation

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image ACM Conferences
          SAC '15: Proceedings of the 30th Annual ACM Symposium on Applied Computing
          April 2015
          2418 pages
          ISBN:9781450331968
          DOI:10.1145/2695664
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Sponsors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 13 April 2015

          Permissions

          Request permissions for this article.

          Check for updates

          Qualifiers

          • Research-article

          Conference

          SAC 2015
          Sponsor:
          SAC 2015: Symposium on Applied Computing
          April 13 - 17, 2015
          Salamanca, Spain

          Acceptance Rates

          SAC '15 Paper Acceptance Rate 291 of 1,211 submissions, 24%;
          Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

          Upcoming Conference

          SAC '25
          The 40th ACM/SIGAPP Symposium on Applied Computing
          March 31 - April 4, 2025
          Catania , Italy

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)4
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 20 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)A preferential interpretation of MultiLayer Perceptrons in a conditional logic with typicalityInternational Journal of Approximate Reasoning10.1016/j.ijar.2023.109065164(109065)Online publication date: Jan-2024
          • (2024)PN-OWL: A two-stage algorithm to learn fuzzy concept inclusions from OWL 2 ontologiesFuzzy Sets and Systems10.1016/j.fss.2024.109048(109048)Online publication date: Jun-2024
          • (2023)Reverse engineering of temporal queries mediated by LTL ontologiesProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/360(3230-3238)Online publication date: 19-Aug-2023
          • (2023)Fuzzy ontology datatype learning using DatilExpert Systems with Applications: An International Journal10.1016/j.eswa.2023.120299228:COnline publication date: 15-Oct-2023
          • (2022)Logical separability of labeled data examples under ontologiesArtificial Intelligence10.1016/j.artint.2022.103785313(103785)Online publication date: Dec-2022
          • (2021)Query Definability and Its Approximations in Ontology-based Data ManagementProceedings of the 30th ACM International Conference on Information & Knowledge Management10.1145/3459637.3482466(271-280)Online publication date: 26-Oct-2021
          • (2020)Classifying Candidate Axioms via Dimensionality Reduction TechniquesModeling Decisions for Artificial Intelligence10.1007/978-3-030-57524-3_15(179-191)Online publication date: 26-Aug-2020
          • (2019)Learning description logic conceptsProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367243.3367272(1682-1688)Online publication date: 10-Aug-2019
          • (2018)Predicting the possibilistic score of OWL axioms through modified support vector clusteringProceedings of the 33rd Annual ACM Symposium on Applied Computing10.1145/3167132.3167345(1984-1991)Online publication date: 9-Apr-2018
          • (2018)Fuzzy Ontologies: State of the Art RevisitedFuzzy Information Processing10.1007/978-3-319-95312-0_20(230-242)Online publication date: 4-Jul-2018
          • Show More Cited By

          View Options

          Login options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media