skip to main content
10.1145/2695664.2695845acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article

All-in-focus imaging technique used to improve 3D retinal fundus image reconstruction

Published: 13 April 2015 Publication History

Abstract

In this paper we have applied the stacking technique on images from a medical device. There is an urgent need in ophthalmology for more cost effective instrumentation for the early diagnosis of glaucoma, one of the leading diseases in the cause of blindness worldwide. The current techniques involve expensive optical equipments generally called fundus camera, which most of the time capture a single high resolution frame for one eye at a time. In this research we have used stereoscopic videos of a state-of-the-art 3D retinal camera, which has simpler optics and electronics when compared to current monoscopic models. Nevertheless, the cross correlation algorithms for depth computation are very sensible to image noise and out of focus regions. We demonstrate the efficiency of our technique on experiments involving a sequence of images extracted from videos in simulations of optic nerves using artificial objects.

References

[1]
F. Aguet, D. Van De Ville, and M. Unser. Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy. IEEE Trans. Image Process., 17(7):1144--1153, 2008.
[2]
V. Algazi, J. Keltner, and C. Johnson. Computer analysis of the optic cup in glaucoma. Invest. Ophthalmol. Vis. Sci., 26(12):1759--1770, 1985.
[3]
L. Barleon, E. M. Hoffmann, M. Berres, N. Pfeiffer, and F. H. Grus. Comparison of dynamic contour tonometry and goldmann applanation tonometry in glaucoma patients and healthy subjects. AJO, 142(4):583--590, 2006.
[4]
R. Bernardes, P. Serranho, and C. Lobo. Digital ocular fundus imaging: a review. Ophthalmologica, 226(4):161--181, 2011.
[5]
M. Z. Brown, D. Burschka, and G. D. Hager. Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell, 25(8):993--1008, 2003.
[6]
E. Corona, S. Mitra, M. Wilson, T. Krile, Y. H. Kwon, and P. Soliz. Digital stereo image analyzer for generating automated 3-d measures of optic disc deformation in glaucoma. IEEE Trans. Med. Imag., 21(10):1244--1253, 2002.
[7]
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226--231, 1996.
[8]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser. Optical coherence tomography-principles and applications. Rep. Prog. Phys., 66(2):239, 2003.
[9]
B. Forster, D. Van De Ville, J. Berent, D. Sage, and M. Unser. Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microsc. Res. Techniq., 65(1-2):33--42, 2004.
[10]
D. Garcia. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal., 54(4):1167--1178, 2010.
[11]
H. Han, J. Jeong, and E. Arai. Virtual out of focus with single image to enhance 3d perception. In 3DTV-CON, pages 1--4, 2011.
[12]
D. C. Hood, A. Slobodnick, A. S. Raza, C. G. De Moraes, C. C. Teng, and R. Ritch. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. IOVS, 55(2):632--649, 2014.
[13]
A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.
[14]
K. N. Kutulakos and S. W. Hasinoff. Focal stack photography: High-performance photography with a conventional camera. In IAPR, 2009.
[15]
X. Lin, J. Suo, G. Wetzstein, Q. Dai, and R. Raskar. Coded focal stack photography. In IEEE ICCP, pages 1--9, 2013.
[16]
S. Liu, S. Lam, R. N. Weinreb, C. Ye, C. Y. Cheung, G. Lai, D. S.-C. Lam, and C. K.-S. Leung. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma. IOVS, 52(10):7325--7331, 2011.
[17]
D. A. Motta, A. Serillo, L. de Matos, F. M. Yasuoka, V. S. Bagnato, and L. A. Carvalho. 3d papillary image capturing by the stereo fundus camera system for clinical diagnosis on retina and optic nerve. In SPIE BiOS, pages 893614--893614, 2014.
[18]
T. Nakagawa, T. Suzuki, Y. Hayashi, Y. Mizukusa, Y. Hatanaka, K. Ishida, T. Hara, H. Fujita, and T. Yamamoto. Quantitative depth analysis of optic nerve head using stereo retinal fundus image pair. J. Biomed. Opt., 13(6):064026--064026, 2008.
[19]
K. Ohba, J. C. P. Ortega, K. Tanie, G. Rin, R. Dangi, Y. Takei, T. Kaneko, and N. Kawahara. Real-time micro-environmental observation with virtual reality. In ICPR, volume 4, pages 487--490, 2000.
[20]
N. Otsu. A threshold selection method from gray-level histograms. Automatica, 11(285-296):23--27, 1975.
[21]
D. Pascolini and S. P. Mariotti. Global estimates of visual impairment: 2010. Br. J. Ophthalmol., page 96:614--618, 2011.
[22]
F. Perez Nava and J. Luke. Simultaneous estimation of super-resolved depth and all-in-focus images from a plenoptic camera. In 3DTV-CON, 2009, pages 1--4, 2009.
[23]
S. Pertuz, D. Puig, M. A. Garcia, and A. Fusiello. Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Trans. Image Process., 22(3):1242--1251, 2013.
[24]
H. A. Quigley and A. T. Broman. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol., 90(3):262--267, 2006.
[25]
N. Ritter, R. Owens, J. Cooper, R. H. Eikelboom, and P. P. Van Saarloos. Registration of stereo and temporal images of the retina. IEEE Trans. Med. Imag., 18(5):404--418, 1999.
[26]
D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. I. J. Comput. Vision, 47(1-3):7--42, 2002.
[27]
P. W. Smith and N. Nandhakumar. An improved power cepstrum based stereo correspondence method for textured scenes. IEEE Trans. Pattern Anal. Mach. Intell., 18(3):338--348, 1996.
[28]
V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology, 113(11):2054--2065, 2006.
[29]
L. Tang, Y. H. Kwon, W. L. Alward, E. C. Greenlee, K. Lee, M. K. Garvin, and M. D. Abràmoff. 3d reconstruction of the optic nerve head using stereo fundus images for computer-aided diagnosis of glaucoma. In SPIE Medical Imaging, pages 76243D--76243D, 2010.
[30]
D. Vaquero, N. Gelfand, M. Tico, K. Pulli, and M. Turk. Generalized autofocus. In IEEE WACV, pages 511--518, 2011.
[31]
J. Xu and O. Chutatape. Auto-adjusted 3-d optic disk viewing from low-resolution stereo fundus image. Comput. Biol. Med., 36(9):921--940, 2006.
[32]
Z. Zhang and R. S. Blum. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proc. of the IEEE, 87(8):1315--1326, 1999.

Cited By

View all
  • (2019)Construction of All-in-Focus Images Assisted by Depth SensingSensors10.3390/s1906140919:6(1409)Online publication date: 22-Mar-2019

Index Terms

  1. All-in-focus imaging technique used to improve 3D retinal fundus image reconstruction

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SAC '15: Proceedings of the 30th Annual ACM Symposium on Applied Computing
    April 2015
    2418 pages
    ISBN:9781450331968
    DOI:10.1145/2695664
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 13 April 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. image processing
    2. optic nerve
    3. stacking technique

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    SAC 2015
    Sponsor:
    SAC 2015: Symposium on Applied Computing
    April 13 - 17, 2015
    Salamanca, Spain

    Acceptance Rates

    SAC '15 Paper Acceptance Rate 291 of 1,211 submissions, 24%;
    Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

    Upcoming Conference

    SAC '25
    The 40th ACM/SIGAPP Symposium on Applied Computing
    March 31 - April 4, 2025
    Catania , Italy

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)Construction of All-in-Focus Images Assisted by Depth SensingSensors10.3390/s1906140919:6(1409)Online publication date: 22-Mar-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media