skip to main content
10.1145/2702123.2702222acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

The Semantic Paintbrush: Interactive 3D Mapping and Recognition in Large Outdoor Spaces

Published:18 April 2015Publication History

ABSTRACT

We present an augmented reality system for large scale 3D reconstruction and recognition in outdoor scenes. Unlike existing prior work, which tries to reconstruct scenes using active depth cameras, we use a purely passive stereo setup, allowing for outdoor use and extended sensing range. Our system not only produces a map of the 3D environment in real-time, it also allows the user to draw (or 'paint') with a laser pointer directly onto the reconstruction to segment the model into objects. Given these examples our system then learns to segment other parts of the 3D map during online acquisition. Unlike typical object recognition systems, ours therefore very much places the user 'in the loop' to segment particular objects of interest, rather than learning from predefined databases. The laser pointer additionally helps to 'clean up' the stereo reconstruction and final 3D map, interactively. Using our system, within minutes, a user can capture a full 3D map, segment it into objects of interest, and refine parts of the model during capture. We provide full technical details of our system to aid replication, as well as quantitative evaluation of system components. We demonstrate the possibility of using our system for helping the visually impaired navigate through spaces. Beyond this use, our system can be used for playing large-scale augmented reality games, shared online to augment streetview data, and used for more detailed car and person navigation.

Skip Supplemental Material Section

Supplemental Material

pn0525-file3.m4v

m4v

76 MB

p3317-miksik.mp4

mp4

163.4 MB

References

  1. Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and Szeliski, R. Building Rome in a Day. CACM (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chen, D. M., Baatz, G., Köser, K., Tsai, S. S., Vedantham, R., Pylvänäinen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B., and Grzeszczuk, R. City-scale landmark identification on mobile devices. In CVPR (2011), 737--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Curless, B., and Levoy, M. A volumetric method for building complex models from range images. In SIGGRAPH (1996), 303--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. PAMI 29, 6 (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Engel, J., Schöps, T., and Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In ECCV (2014).Google ScholarGoogle ScholarCross RefCross Ref
  6. Engel, J., Sturm, J., and Cremers, D. Semi-Dense Visual Odometry for a Monocular Camera. In ICCV (2013). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fischler, M. A., and Bolles, R. C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. CACM 24, 6 (1981). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Froissard, B., Konik, H., Trmeau, A., and Dinet, . Contribution of augmented reality solutions to assist visually impaired people in their mobility. In Universal Access in Human-Computer Interaction. Design for All and Accessibility Practice. Springer, 2014, 182--191.Google ScholarGoogle Scholar
  9. Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. Reconstructing Building Interiors from Images. In ICCV (2009).Google ScholarGoogle ScholarCross RefCross Ref
  10. Geiger, A., Ziegler, J., and Stiller, C. StereoScan: Dense 3d Reconstruction in Real-time. In IVS (2011).Google ScholarGoogle ScholarCross RefCross Ref
  11. Habbecke, M., and Kobbelt, L. LaserBrush: A Flexible Device for 3D Reconstruction of Indoor Scenes. In SPM (2008). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hane, C., Zach, C., Cohen, A., Angst, R., and Pollefeys, M. Joint 3d scene reconstruction and class segmentation. In CVPR (2013), 97--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hartley, R., and Zisserman, A. Multiple view geometry in computer vision. Cambridge university press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hicks, S. L., Wilson, I., van Rheede, J. J., MacLaren, R. E., Downes, S. M., and Kennard, C. Improved mobility with depth-based residual vision glasses. Investigative Ophthalmology & Visual Science 55, 5 (2014).Google ScholarGoogle Scholar
  15. Huang, A. S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., and Roy, N. Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera. In ISRR (2011).Google ScholarGoogle Scholar
  16. Iannacci, F., Turnquist, E., Avrahami, D., and Patel, S. N. The Haptic Laser: Multi-Sensation Tactile Feedback for At-a-Distance Physical Space Perception and Interaction. In CHI (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jr., D. R. O., and Nielsen, T. Laser Pointer Interaction. In CHI (2001).Google ScholarGoogle Scholar
  18. Klein, G., and Murray, D. W. Parallel tracking and mapping for small ar workspaces. In ISMAR (2007). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ladicky, L., Russell, C., Kohli, P., and Torr, P. H. S. Associative Hierarchical CRFs for Object Class Image Segmentation. In ICCV (2009).Google ScholarGoogle ScholarCross RefCross Ref
  20. Mariotti, S. P. Global Data on Visual Impairments 2010. Tech. rep., World Health Organization, 2010.Google ScholarGoogle Scholar
  21. Munoz, D., Bagnell, J. A., and Hebert, M. Stacked Hierarchical Labeling. In ECCV (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. KinectFusion: Real-Time Dense Surface Mapping and Tracking. In ISMAR (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. DTAM: Dense Tracking and Mapping in Real-Time. In ICCV (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nguyen, T., Grasset, R., Schmalstieg, D., and Reitmayr, G. Interactive syntactic modeling with a single-point laser range finder and camera. In ISMAR (2013).Google ScholarGoogle ScholarCross RefCross Ref
  25. Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. Real-time 3d reconstruction at scale using voxel hashing. TOG 32, 6 (2013), 169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Qin, Y., Shi, Y., Jiang, H., and Yu, C. Structured Laser Pointer: Enabling Wrist-Rolling Movements as a New Interactive Dimension. In AVI (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rosten, E., and Drummond, T. Machine learning for high-speed corner detection. In ECCV (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H. J., and Davison, A. J. SLAM++: SLAM at the Level of Objects. In CVPR (2013).Google ScholarGoogle Scholar
  29. Sengupta, S., Greveson, E., Shahrokni, A., and Torr, P. H. S. Urban 3d semantic modelling using stereo vision. In ICRA (2013), 580--585.Google ScholarGoogle ScholarCross RefCross Ref
  30. Taneja, A., Ballan, L., and Pollefeys, M. City-scale change detection in cadastral 3d models using images. In CVPR (2013), 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. Bundle adjustment - a modern synthesis. In Workshop on Vision Algorithms (1999). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Valentin, J., Vineet, V., Cheng, M.-M., Kim, D., Shotton, J., Kohli, P., Niessner, M., Criminisi, A., Izadi, S., and Torr, P. H. S. SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips. ACM TOG (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Valentin, J. P. C., Sengupta, S., Warrell, J., Shahrokni, A., and Torr, P. H. S. Mesh based semantic modelling for indoor and outdoor scenes. In CVPR (2013), 2067--2074. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J., and Mcdonald, J. Robust real-time visual odometry for dense rgb-d mapping. In ICRA (2013).Google ScholarGoogle ScholarCross RefCross Ref
  35. Wienss, C., Nikitin, I., Goebbels, G., Troche, K., Göbel, M., Nikitina, L., and Müller, S. Sceptre -- An Infrared Laser Tracking System for Virtual Environments. In VRST (2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Xiong, X., Munoz, D., Bagnell, J. A., and Hebert, M. 3-D Scene Analysis via Sequenced Predictions over Points and Regions. In ICRA (2011).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Semantic Paintbrush: Interactive 3D Mapping and Recognition in Large Outdoor Spaces

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '15: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
      April 2015
      4290 pages
      ISBN:9781450331456
      DOI:10.1145/2702123

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 18 April 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '15 Paper Acceptance Rate486of2,120submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader