skip to main content
10.1145/2723372.2723709acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Skew-Aware Join Optimization for Array Databases

Published: 27 May 2015 Publication History

Abstract

Science applications are accumulating an ever-increasing amount of multidimensional data. Although some of it can be processed in a relational database, much of it is better suited to array-based engines. As such, it is important to optimize the query processing of these systems. This paper focuses on efficient query processing of join operations within an array database. These engines invariably ``chunk'' their data into multidimensional tiles that they use to efficiently process spatial queries. As such, traditional relational algorithms need to be substantially modified to take advantage of array tiles. Moreover, most n-dimensional science data is unevenly distributed in array space because its underlying observations rarely follow a uniform pattern. It is crucial that the optimization of array joins be skew-aware. In addition, owing to the scale of science applications, their query processing usually spans multiple nodes. This further complicates the planning of array joins.
In this paper, we introduce a join optimization framework that is skew-aware for distributed joins. This optimization consists of two phases. In the first, a logical planner selects the query's algorithm (e.g., merge join), the granularity of the its tiles, and the reorganization operations needed to align the data. The second phase implements this logical plan by assigning tiles to cluster nodes using an analytical cost model. Our experimental results, on both synthetic and real-world data, demonstrate that this optimization framework speeds up array joins by up to 2.5X in comparison to the baseline.

References

[1]
M. Stonebraker et al. C-store: a column-oriented DBMS. In VLDB, 2005.
[2]
T. Achterberg. Scip: solving constraint integer programs. Mathematical Programming Computation, 1(1):1--41, 2009.
[3]
A. Ailamaki, V. Kantere, and D. Dash. Managing scientific data. Communications of the ACM, 53(6):68--78, 2010.
[4]
C. Balkesen, J. Teubner, G. Alonso, and T. Ozsu. Main-memory hash joins on multi-core CPUs: Tuning to the underlying Hardware. In ICDE, 2013.
[5]
A. Ballegooij. Ram: A multidimensional array dbms. In EDBT Workshops '05.
[6]
P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimensional database system RasDaMan. In SIGMOD Record, 1998.
[7]
S. Blanas, Y. Li, and J. Patel. Design and evaluation of main memory hash join algorithms for multi-core CPUs. In SIGMOD, 2011.
[8]
H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Valduriez. Prototyping bubba, a highly parallel database system. Knowledge and Data Engineering, IEEE Transactions on, 2(1):4--24, 1990.
[9]
P. G. Brown. Overview of SciDB: large scale array storage, processing and analysis. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages 963--968. ACM, 2010.
[10]
P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush, P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. J. DeWitt, B. Heath, D. Maier, S. Madden, J. M. Patel, M. Stonebraker, and S. B. Zdonik. A Demonstration of SciDB: A Science-Oriented DBMS. PVLDB, 2(2):1534--1537, 2009.
[11]
D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I. Hsiao, and R. Rasmussen. The gamma database machine project. Trans. on Knowledge & Data Eng., 2(1):44--62, 1990.
[12]
D. J. DeWitt and J. Gray. Parallel database systems: The future of database processing or a passing fad? SIGMOD Record, 19(4):104--112, 1990.
[13]
D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood. Implementation techniques for main memory database systems, volume 14. June 1984.
[14]
D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew handling in parallel joins. In VLDB, volume 92, pages 27--40, 1992.
[15]
S. Englert, J. Gray, T. Kocher, and P. Shah. A benchmark of non-stop sql release 2 demonstrating near-linear speedup and scaleup on large databases. Tandem Tech Report, 1989.
[16]
C. Faloutsos, B. Seeger, A. Traina, and C. Traina, Jr. Spatial join selectivity using power laws. SIGMOD Rec., 29(2), May 2000.
[17]
S. Ganguly, W. Hasan, and R. Krishnamurthy. Query Optimization for Parallel Execution. In SIGMOD, 1992.
[18]
F. Glover. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 13(5):533--549, 1986.
[19]
J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber. Scientific data management in the coming decade. ACM SIGMOD Record, 34(4):34--41, 2005.
[20]
M. Kitsuregawa and Y. Ogawa. Bucket Spreading Parallel Hash: A New, Robust, Parallel Hash Join Method for Data Skew in the Super Database Computer. In VLDB, 1990.
[21]
M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to data base machine and its architecture. New Generation Computing, 1(1):63--74, 1983.
[22]
Large Synoptic Survey Telescope. http://www.lsst.org.
[23]
J. Li, A. Deshpande, and S. Khuller. Minimizing Communication Cost in Distributed Multi-query Processing. In ICDE, 2009.
[24]
M. Mehta and D. J. DeWitt. Data placement in shared-nothing parallel database systems. The VLDB Journal, 6(1):53--72, 1997.
[25]
NASA, MODIS Website. modis.gsfc.nasa.gov/data/.
[26]
National Oceanic and Atmospheric Administration. Marine Cadastre. http://marinecadastre.gov/AIS/.
[27]
M. E. Newman. Power laws, pareto distributions and zipf's law. Contemporary Physics, 46(5):323--351, 2005.
[28]
G. Planthaber, M. Stonebraker, and J. Frew. Earthdb: scalable analysis of modis data using scidb. In BigSpatial '12.
[29]
O. Polychroniou, R. Sen, and K. A. Ross. Track join: Distributed joins with minimal network traffic. SIGMOD '14, pages 1483--1494, New York, NY, USA, 2014. ACM.
[30]
W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and T. Neumann. Locality-sensitive operators for parallel main-memory database clusters. In ICDE, pages 592--603, 2014.
[31]
D. Schneider and D. DeWitt. A performance evaluation of four parallel join algorithms in a shared-nothing multiprocessor environment. In SIGMOD '89.
[32]
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In Proceedings of the 1979 ACM SIGMOD international conference on Management of data, pages 23--34. ACM, 1979.
[33]
Sloan Digital Sky Survey. http://www.sdss.org.
[34]
E. Soroush, M. Balazinska, and D. L. Wang. ArrayStore: a storage manager for complex parallel array processing. In SIGMOD, 2011.
[35]
M. Stonebraker. The case for shared nothing. IEEE Database Eng. Bull., 1986.
[36]
M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier, O. Ratzesberger, and S. B. Zdonik. Requirements for science data bases. In CIDR, 2009.
[37]
R. Taft, M. Vartak, N. R. Satish, N. Sundaram, S. Madden, and M. Stonebraker. Genbase: a complex analytics genomics benchmark. In SIGMOD Conference, pages 177--188, 2014.
[38]
C. B. Walton, A. G. Dale, and R. M. Jenevein. A taxonomy and performance model of data skew effects in parallel joins. In VLDB, 1991.
[39]
X. Wang, R. Burns, A. Terzis, and A. Deshpande. Network - Aware Join Processing in Global Scale Database Federations. In ICDE, 2008.
[40]
J. Wolf, D. Dias, and P. Yu. A parallel sort merge join algorithm for managing data skew. Trans. on Parallel and Dist. Systems, 1993.
[41]
J. Wolf, P. Yu, J. Turek, and D. Dias. A parallel hash join algorithm for managing data skew. Trans. on Parallel and Dist. Systems, 1993.

Cited By

View all
  • (2024)Adaptive Quotient FiltersProceedings of the ACM on Management of Data10.1145/36771282:4(1-28)Online publication date: 30-Sep-2024
  • (2024)Optimising Queries for Pattern Detection Over Large Scale Temporally Evolving GraphsIEEE Access10.1109/ACCESS.2024.341735212(86790-86808)Online publication date: 2024
  • (2022)Exploiting Data Skew for Improved Query PerformanceIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2020.300644634:5(2176-2189)Online publication date: 1-May-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '15: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
May 2015
2110 pages
ISBN:9781450327589
DOI:10.1145/2723372
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 May 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. array database
  2. distributed computation
  3. join optimization
  4. skew

Qualifiers

  • Research-article

Funding Sources

  • Intel

Conference

SIGMOD/PODS'15
Sponsor:
SIGMOD/PODS'15: International Conference on Management of Data
May 31 - June 4, 2015
Victoria, Melbourne, Australia

Acceptance Rates

SIGMOD '15 Paper Acceptance Rate 106 of 415 submissions, 26%;
Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)29
  • Downloads (Last 6 weeks)8
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Adaptive Quotient FiltersProceedings of the ACM on Management of Data10.1145/36771282:4(1-28)Online publication date: 30-Sep-2024
  • (2024)Optimising Queries for Pattern Detection Over Large Scale Temporally Evolving GraphsIEEE Access10.1109/ACCESS.2024.341735212(86790-86808)Online publication date: 2024
  • (2022)Exploiting Data Skew for Improved Query PerformanceIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2020.300644634:5(2176-2189)Online publication date: 1-May-2022
  • (2022)ReSKY: Efficient Subarray Skyline Computation in Array DatabasesDistributed and Parallel Databases10.1007/s10619-022-07419-540:2-3(261-298)Online publication date: 17-Jul-2022
  • (2021)LachesisProceedings of the VLDB Endowment10.14778/3457390.345739214:8(1262-1275)Online publication date: 21-Oct-2021
  • (2021)An Algorithm for Optimizing Small-Large Outer Join in Cloud Computing Environment2021 26th International Computer Conference, Computer Society of Iran (CSICC)10.1109/CSICC52343.2021.9420579(1-5)Online publication date: 3-Mar-2021
  • (2020)Near-Optimal Distributed Band-Joins through Recursive PartitioningProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389750(2375-2390)Online publication date: 11-Jun-2020
  • (2019)Accelerating array joining with integrated value-indexProceedings of the 31st International Conference on Scientific and Statistical Database Management10.1145/3335783.3335790(145-156)Online publication date: 23-Jul-2019
  • (2018)Distributed Joins and Data Placement for Minimal Network TrafficACM Transactions on Database Systems10.1145/324103943:3(1-45)Online publication date: 16-Nov-2018
  • (2018)Distributed caching for processing raw arraysProceedings of the 30th International Conference on Scientific and Statistical Database Management10.1145/3221269.3221295(1-12)Online publication date: 9-Jul-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media